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Purpose: The purpose of the study was to determine
whether distinct subgroups of preschool children with
speech sound disorders (SSD) could be identified using
a subgroup discovery algorithm (SUBgroup discovery via
Alternate Random Processes, or SUBARP). Of specific
interest was finding evidence of a subgroup of SSD
exhibiting performance consistent with atypical speech
motor control.
Method: Ninety-seven preschool children with SSD
completed speech and nonspeech tasks. Fifty-three
kinematic, acoustic, and behavioral measures from these
tasks were input to SUBARP.
Results: Two distinct subgroups were identified from the
larger sample. The 1st subgroup (76%; population prevalence
estimate = 67.8%–84.8%) did not have characteristics that
Reserve University, Cleveland, OH
Texas at Dallas, Richardson
nter, University of Wisconsin—Madison
te of Health Professions, Boston, MA
niversity, Pittsburgh, PA
ent of Veterans Affairs, Washington, DC

ce to Jennell C. Vick: jennell@case.edu

reiman
tor: Ben A. M. Maassen

21, 2012
ived May 1, 2013
e 27, 2014
/2014_JSLHR-S-12-0193

ch, Language, and Hearing Research • Vol. 57 • 2033–2050 • Dec

p://jslhr.pubs.asha.org/ by a Health Sci Learning Ctr User  on 0
bs.asha.org/ss/Rights_and_Permissions.aspx
would suggest atypical speech motor control. The 2nd
subgroup (10.3%; population prevalence estimate = 4.3%–
16.5%) exhibited significantly higher variability in measures
of articulatory kinematics and poor ability to imitate iambic
lexical stress, suggesting atypical speech motor control.
Both subgroups were consistent with classes of SSD in the
Speech Disorders Classification System (SDCS; Shriberg
et al., 2010a).
Conclusion: Characteristics of children in the larger
subgroup were consistent with the proportionally large
SDCS class termed speech delay; characteristics of
children in the smaller subgroup were consistent with
the SDCS subtype termed motor speech disorder—not
otherwise specified. The authors identified candidate
measures to identify children in each of these groups.
The purpose of this study was to determine whether
a subgroup of children with atypical speech motor
control could be identified from a sample of chil-

dren with speech sound disorders (SSD). We analyzed 53
measures, including measures of speech movement, from a
relatively large number of cases (N = 97). We used a sub-
group discovery algorithm to achieve this aim, a technique
within the data-driven methods of machine learning.

Subgroup discovery seeks to identify subgroups within
a set of data without any a priori assumption of the number
or size of the subgroups to be identified. A subgroup dis-
covery method generally looks for important patterns in the
data, derives rules from the patterns, and then uses the rules
to characterize subgroups. The rules may take on various
forms that may or may not allow human interpretation,
though an important objective of this investigation was that
the emergent rules could be easily understood and subjected
to expert interpretation and knowledge of the selected
subgroups.

Many subgroup discovery techniques are available
for data mining (Herrera, Carmona, González, & del Jesus,
2011). There is a general methodology to convert machine
learning techniques that explain differences between two
sets into subgroup discovery techniques (Lavrač, Cestnik,
Gamberger, & Flach, 2004). We selected a subgroup dis-
covery method that was based on this construction and that
would produce humanly comprehensible rules (Truemper,
2009). The method, called SUBgroup discovery via Alter-
nate Random Processes, or SUBARP, was applied to our
data from preschool children with SSD, and the results are
the focus of this article.

SSD, and specifically speech delay (SD), are highly
prevalent in preschool children (15.6% among 3-year-olds;
Campbell et al., 2003), with approximately 4% of all chil-
dren having persistent SD at age 6 years (Shriberg, Tomblin,
& McSweeny, 1999). As a population, children with SSD are
heterogeneous, and the presumption of distinct subgroups
Disclosure: The authors have declared that no competing interests existed at the
time of publication.
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is common. Researchers have sought to identify distinct
subgroups of SSD to improve prognostic accuracy and to
motivate more narrowly targeted interventions. Histori-
cally, children with SSD were classified under the category
of phonetic-based articulatory disorders or phonemic-based
phonological disorders (Bauman-Wängler, 2004; Bernthal &
Bankson, 2003), which distinguished motor- and linguistic-
based speech deficits, respectively. This framework, how-
ever, neglects both the etiologic foundations of some cases
of SSD and the interaction of the motor and linguistic ele-
ments of speech production (Goffman, 2005). More complex
taxonomies have been proposed that categorize subgroups
of SSD on the basis of etiology (Davis, 2005; Shriberg,
Austin, Lewis, McSweeny, & Wilson, 1997a; Shriberg et al.,
2010a) or speech sound error types (Dodd, 1995b; Dodd &
McCormack, 1995). Each of these taxonomies posits a sub-
population of SSD whose disorder results from deficiencies
or differences in speech motor control and coordination.
Direct physiological markers for a subpopulation of this
type have not been identified (Strand, McCauley, Weigand,
Stoeckel, & Baas, 2013).

Figure 1 depicts the Speech Disorders Classification
System (SDCS; Shriberg, Austin, Lewis, McSweeny, &
Wilson, 1997b; Shriberg et al., 2010a, 2010b), an etiologi-
cal classification system for SSD. In clinical typologies, the
SDCS includes two classes of children with SSD: SD and
Figure 1. The Speech Disorders Classification System (SDCS). L. D. Shribe
& Phonetics, 2012; 26 (5): 445–482, copyright © 2012, Informa Healthcare.
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motor speech disorders (MSD). Whereas the speech of
children in the SD class typically normalizes by school age,
with some errors persisting until approximately age 9 years,
the segmental errors and prosodic and vocal features of
children in the MSD class typically persist into adolescence
and, for some speakers, for a lifetime (e.g., Shriberg et al.,
2006). The primary speech processing deficits in two sub-
groups of MSD—motor speech disorders–apraxia of speech
and motor speech disorders–dysarthria—are presumed to
be in transcoding (planning–programming) and feedfor-
ward processing and in neuromotor execution, respectively
(Shriberg & Strand, 2014). The underlying speech process-
ing deficits and diagnostic signs of a third putative sub-
group of MSD, termed motor speech disorder–not otherwise
specified (MSD-NOS), are presently unspecified, pending
empirical study (Shriberg et al., 2010a). Crucially, deficits
in speech motor control in children provisionally classified
as MSD-NOS are a primary risk factor for the 25% of chil-
dren with SD (i.e., 4% of children overall) whose SSD per-
sists past age 6 years (Flipsen, 2003; Goozée et al., 2007;
Shriberg et al., 1999). Early identification of children with
MSD-NOS may improve prognostic estimates by clinicians
who treat these disorders in preschool-age children, with
implications for the inclusion of a motor focus in treatment.

In this study of SSD, we included many measures
of speech performance, speech acoustics, and articulatory
rg, H. L. Lohmeier, E. A. Strand, & K. J. Jakielski, Clinical Linguistics
Adapted with permission of Informa Healthcare.
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movement from a group of 3- to 5-year-old children with
SSD (N = 97) to seek empirical support for subgroups
within SSD. The SDCS provided an organizing framework
within which discovered subgroups might be explained (see
technical discussion of the term discovered in the next sec-
tion). Clinical experience also supported the important a
priori assumption that a small subgroup of children would
be distinguishable from other children with SSD primarily
on the basis of reduced motor performance, and the target
measures selected for analysis were specifically based on
this assumption. Because the differences in speech produc-
tion for children with MSD-NOS might be observable in
underlying speech movements, we included measures of ar-
ticulatory speech kinematics for their potential to distinguish
children in this putative subgroup.

Extensive study of developing speech behaviors has
described the physiological framework of early and later
speech acquisition (Connaghan, Moore, & Higashakawa,
2004; Goffman, 1999; Green, Moore, Higashikawa, &
Steeve, 2000; Green, Moore, & Reilly, 2002; Green et al.,
1997; Green & Wilson, 2006; Moore, Caulfield, & Green,
2001; Moore & Ruark, 1996; Ruark & Moore, 1997; Smith
& Zelaznik, 2004; Steeve & Moore, 2009; Walsh, Smith, &
Weber-Fox, 2006; Wohlert & Smith, 2002). Using palato-
graphy and electromagnetic articulography, lingual ges-
tures produced by older children (i.e., older than 9 years)
with persistent speech sound errors have been shown to
be distinct from those of their typically developing peers
(Gibbon, 1999; Gibbon & Wood, 2002; Goozée et al., 2007),
providing support for the notion that speech motor control
differences are associated with some SSD. In preschool-age
children, measurements of speech movement have included
point metrics (e.g., maximum displacement) as well as more
dynamic measures of whole-word and phrase movements
(e.g., the spatiotemporal index; Smith, Goffman, Zelaznik,
Ying, & McGillem, 1995). It is not clear which, if any, of
these measures would be expected to be sensitive and spe-
cific to any differences in speech movement that might exist
among preschool-age children with SSD. Thus, a reasonable
initial approach to identifying subgroups within a larger
sample of children with SSD was to include a large number
of measures of different types and from different speech and
nonspeech oral behaviors, seeking convergent evidence of
categorical differences. Algorithmic subgroup discovery
could then be used to identify possible subgroups and the
measures that best distinguish these subgroups.

Subgroup Discovery
SUBARP (Truemper, 2009), a machine learning algo-

rithm, provided a number of distinct advantages for analyz-
ing these data, including the output of rules for subgroups
that were interpretable in the context of expert real-world
knowledge. Another advantage was that, as with other sub-
group discovery algorithms, a predetermined significance
level could be set so that only identified subgroups exceeding
this threshold were reported. Imposing a threshold intro-
duced the possibility that we would identify no subgroups,
ded From: http://jslhr.pubs.asha.org/ by a Health Sci Learning Ctr User  on 0
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which enhanced confidence in the reliability of the results.
Alternatively, multiple significant subgroups could be discov-
ered in a data-driven fashion, without requiring an estimate
(i.e., constraint) of the number of subgroups. A particularly
important feature of SUBARP in the current application
was its capacity to distinguish subgroups that accounted for
less than 5% of the sample (i.e., rare subgroups). Finally,
given a large number of measures, SUBARP did not require
a comparably large number of cases (participants) to identify
relevant subgroups. This capability permitted a sample of
modest size to be divided between training and testing sets
for cross-validation without any associated loss in the ability
of the algorithm to discover subgroups. For any subgroup
discovered in the training set, confidence about the existence
of that subgroup in future samples and the larger population
could be estimated from the testing set. SUBARP is derived
from the classification method Lsquare and related results
(Bartnikowski, Granberry, Mugan, & Truemper, 2006;
Felici, Sun, & Truemper, 2006; Felici & Truemper, 2002,
2005; Mugan & Truemper, 2008; Truemper, 2009) using
Lavrač et al.’s (2004) approach. The Appendix includes a
detailed description of the SUBARP procedures.

Research Questions
The investigation was designed to address two exper-

imental questions in a sample of 97 preschool-age children
with SSD.

1. Are there distinct subgroups of SSD that can be
identified by applying a subgroup discovery algorithm
to a large set of measures of auditory–perceptual,
speech acoustic, and articulatory kinematic features of
speech performance? Specifically, is there evidence for
a subgroup of SSD that is distinguished by measures
consistent with atypical speech motor control?

2. Which auditory–perceptual, acoustic, kinematic, and
demographic measures best differentiate subgroups
identified in the present sample of children with SSD?

Method
Participants

Ninety-seven children were enrolled in this study.
Participants had receptive language skills within normal
limits, as measured by a scaled score of 7 or greater on
the Linguistic Concepts subtest of the Clinical Evaluation
of Language Fundamentals—Preschool (Wiig, Secord, &
Semel, 1992). In addition, participants had oral structures
within normal limits as evaluated by the Oral/Speech Mo-
tor Control Protocol (Robbins & Klee, 1987). Participants’
hearing thresholds were within normal limits on the day of
testing as screened with pure-tone audiometry (25 dB HL
at 1, 2, and 4 kHz). Finally, inclusionary criteria required
at least one of the following for each participant:

1. Referral to the study by a certified speech-language
pathologist (SLP) noting a diagnosis, based on a formal
diagnostic evaluation, of a moderate to severe SSD.
Vick et al.: Subclassification of Speech Sound Disorders 2035
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2. Classification as SD using SDCS procedures, including
an error profile from the 100 first-occurrence words in
the child’s conversational speech sample. At the time
these classifications were made, the SDCS software did
not include classification algorithms for MSD or any
of the three subgroups shown in Figure 1.

On the basis of SDCS criteria, 61 (63%) of the 97 par-
ticipants were classified as SD, 12 (12%) were classified as
normal or normalized speech acquisition (NSA), and 24
(25%) were classified as between NSA and SD (NSA–SD).
Children who were included solely on the basis of the SLP’s
judgment of moderate to severe SSD (i.e., without a con-
gruent diagnosis using the SDCS) provided variance to the
sample that was meant to reflect the true population of chil-
dren being treated for SSD (i.e., most children seen clini-
cally are not classified using the SDCS but are diagnosed
using the expert opinion of a SLP).

Participants were 36 to 59 months old (M = 46 months,
SD = 4 months). Consistent with prior findings of a 2:1 ratio
of boys to girls with SD (Campbell et al., 2003), 66 (68%)
of the children in the present sample were male. All partici-
pants were monolingual speakers of English from the Pitts-
burgh, Pennsylvania, metropolitan area. A questionnaire
adapted from Tomblin (1989) was administered to deter-
mine the presence of a developmental communication dis-
order in participants’ first-degree relatives. Of the sample,
34% (n = 33) had a positive family history of communica-
tion disorders, which was slightly higher than that reported
in prior samples (28.1%; Campbell et al., 2003).

Tasks
Measures of performance on five speech and non-

speech tasks from a larger protocol were included in the
analyses. The tasks and the rationale for inclusion are de-
scribed in Table 1. Measures of nonspeech tasks (i.e., chew-
ing and vertical jaw oscillation) were included because these
measures were found to be sensitive to differences in devel-
opmental subgroupings of preschool children with typical
speech (Vick et al., 2012).

Data Acquisition
During acquisition of the kinematic data, children

were seated in a Rifton positioning chair fitted with a ta-
ble. They were instructed to sit upright and to keep their
hands on the table, holding a plush toy to avoid hand and
arm movements, which might have introduced artifacts
into the speech movement data. As described in Table 1,
tasks used for acquisition of speech data were elicited via
imitation of recorded adult female model productions.
Nonverbal tasks were elicited via instructions to the child
(chewing or imitation [silent vertical jaw oscillation]). To
acquire the conversational speech sample, participants en-
gaged in a play session with an experimenter without re-
strictions on position or movement. The play session took
place before the placement of the markers for kinematic
tracking. The examiners followed a standard SDCS protocol
2036 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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to obtain conversational speech samples about events in the
participant’s lives (e.g., Shriberg, Potter, & Strand, 2011).

Audio data. Audio recordings of the session were ob-
tained using a lapel-style wireless microphone (Shure model
UI-UA) affixed to the child’s forehead with surgical tape.
This placement provided a fixed microphone-to-mouth dis-
tance. When the child would not tolerate this placement,
the microphone was taped to the headrest of the chair. The
signal from the microphone was amplified using a Mackie
12-channel mixer (Model 1202-VLZ Pro). The amplified
signal was recorded with a video recorder (Panasonic, AG-
1980) and then filtered for antialiasing and digitized with
the video signal at a sampling rate of 44.1 KHz.

Video (articulatory) data. Vertical movement records
of the upper lip, lower lip, and jaw were extracted from the
video recordings. An infrared camera and light source (Burle,
TC351A) were used to record the movement of small (3-mm),
flat, circular reflective markers attached in the midline of
the child’s upper lip, lower lip, and jaw (above the mental
symphysis). Additional markers were placed on the tip
of the nose and the bridge of the nose to provide landmarks
for correction of head movement, which was accomplished
algorithmically by the motion tracking software. A reference
frame with two markers, 2 cm apart, was affixed to each
child’s forehead to calibrate distance. Each video was reviewed
and logged, and task events were digitized for subsequent
parsing and analysis. Two independent computer-based
movement tracking systems were used to extract position in
the frontal plane (i.e., vertical and lateral positions) of the
markers in Cartesian coordinates from the digitized video
recordings. The first was Version 6.05 of Motus (Peak Per-
formance). The second was DS-MTT Version 2 by Henesis,
a custom MATLAB routine created for movement tracking
for this project, which was developed later in the data ac-
quisition phase to improve the rate of data processing. In-
tersystem reliability was confirmed using 15% of the data
with both systems, which yielded high concordance (>90%).
The sampling rate for the kinematic data was 60 Hz. The
movement records for the upper lip, lower lip, and jaw were
low-pass filtered (flp = 15 Hz) forward and reverse with a
digital, zero-phase shift, third-order Butterworth filter. In
addition, the best straight-line linear trend was removed
from each displacement record to correct for very low fre-
quency artifact.

Data Processing and Standardizing
All parsing and transcription of the data were com-

pleted with blinding as to the diagnostic status of the par-
ticipants. Data were parsed in accordance with a parallel
data set from preschool-age children with typical speech ac-
quisition described in a prior report (Vick et al., 2012); the
temporal overlap of these analyses reduced potential bias
arising from the researcher’s knowledge of a participant’s
diagnosis.

Acoustic parsing. Each imitation of a target stimulus
was parsed with reference to the audio signal from the video
recorder. The experimenter listened to and inspected the
2033–2050 • December 2014
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Table 1. Tasks completed by all participants.

Task Description and goal Stimuli

Conversational
speech sample

Participants engaged in play session to evoke a 15-min sample. Narrow transcription
of audio recording as well as error analysis of 100 first-occurrence words were
completed in PEPPER (Shriberg, Allen, McSweeny, & Wilson, 2001). Provided all
data for production phonology and the single measure of language production
(average words per utterance).

Age-appropriate toys were
used to elicit the sample

Lexical stress task Five imitations of each of two lexical stress (trochaic and iambic) bisyllables in CVCV
context. Six words (baba, mama, and papa in trochaic and iambic stress) were
produced, with five repetitions of each bisyllable imitated in a row. Provided
perceptual, acoustic, and kinematic data for each production as well as measures
of acoustic and kinematic variability on multiple repetitions.

Recorded adult female model

Nonword repetition
task

Four words from the Syllable Repetition Task (Shriberg et al., 2009). The nonwords
were bada, bama, bamana, and manaba, produced with equal stress. Five
repetitions of each target production were presented to each participant,
alternating with the participant’s imitation of the model. The same token was
imitated five times before progressing to the next token. Provided information
about speech processing in increasingly complex contexts (two- and three-syllable
nonwords). Contained only four of the Early 8 consonants and a single low back
vowel. Multiple repetitions of each nonword allowed for measurement of acoustic
and kinematic variability.

Recorded adult female model

NS tasks The NS tasks included two trials of chewing a cracker and five trials of silent vertical
jaw oscillations. The tasks provided measures of maximum mandibular
displacement in NS context as well as measures of NS cyclic kinematic variability.

Live adult, female model

Note. PEPPER = Programs to Examine Phonetic and Phonological Evaluation Records; NS = nonspeech.
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waveform of each segment and roughly parsed the onset
and offset of the entire production using a graphical user
interface of a custom-scripted MATLAB algorithm. The
algorithm subsequently added 50 ms to the beginning and
end of the parsed signal to ensure inclusion of complete
acoustic information for later perceptual judgments.

The vowels of individual syllables were then closely
parsed for acoustic analyses. The vowel onset was defined
as the first positive-going zero crossing in the signal when
the waveform became periodic (i.e., vocalic); the offset was
defined as the final negative-going zero crossing in the pe-
riodic signal associated with the vowel. The audio record
was accompanied by a trace of the signal amplitude. To
automate parsed landmarks, an amplitude threshold at
15% of the maximum amplitude produced was overlaid on
the amplitude envelope. The intersection of the amplitude
envelope and the 15% threshold was used to identify the
beginning and end of each vowel. User-selected landmarks
were “snapped” to this intersection by the algorithm. Au-
dio playback assisted users in completing fine acoustic
parsing. Panel A of Figure 2 depicts the acoustic parsing
user interface.

Jaw, upper lip, and lower lip kinematic parsing. For
the speech tasks, movement trajectories were obtained for
the markers on the upper lip, lower lip, and jaw. Velocity
zero crossings in the vertical jaw displacement record were
used to parse the onset and offset boundaries of all three
(upper lip, lower lip, and jaw) position traces (Green et al.,
2000). The velocity of vertical jaw position was derived
from the position record, and zero crossings were displayed
as vertical lines over the displacement record. The onset
boundary was operationally defined as the last negative-
traveling zero crossing in the velocity waveform before jaw
ded From: http://jslhr.pubs.asha.org/ by a Health Sci Learning Ctr User  on 0
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depression for the vowel; the first velocity zero crossing
during jaw depression for the final syllable was used to
mark the offset boundary. The time indices for these onset
and offset boundaries were used to parse the displacement
trajectories for the upper and lower lip. Panel B of Figure 2
depicts the speech task kinematic parsing interface.

Because the movement of the jaw contributes sub-
stantially to the displacement of the lower lip, the displace-
ment of the marker on the lower lip represented the combined
movement of the lower lip and the jaw. Accordingly, the
jaw displacement signal was subtracted, sample by sample,
from the lower lip displacement signal. The resulting trajec-
tory was the record used to represent lower lip movement
(Green et al., 2000).

Nonspeech task parsing. For the nonspeech tasks, mea-
sures were based only on the position trace from the jaw.
Chewing or vertical jaw oscillation samples that had fewer
than three cycles or exhibited movement artifact were ex-
cluded from the analyses. First and last chewing cycles were
removed from each chewing trial as well. Because the mea-
sures for these tasks included cycle-to-cycle measures, each
cycle was demarcated. Jaw elevation–depression–elevation
(open–close) cycles were parsed algorithmically, marking
each cycle boundary at its peak elevation (identified by the
associated zero velocity point). Because of the irregular
displacement signal associated with molar contact during
chewing, numerous zero crossings in the velocity record
occurred during some instances of jaw elevation. In these
cases, the algorithm specified the rightmost zero crossing
as the cycle onset–offset boundary. Occasionally, the algo-
rithm would yield a false positive or false negative bound-
ary selection, in which case the user was able to modify the
selections in the interface by either adding or subtracting
Vick et al.: Subclassification of Speech Sound Disorders 2037
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Figure 2. Panels A and B plot acoustic and kinematic data, respectively, for an iambic production of baba. In Panel A, the amplitude envelope is
plotted in solid black, and 15% of the maximum amplitude is plotted as a dashed line. The beginning and end of vowels were parsed algorithmically
at the intersection of these lines. Panel B is a plot of the vertical displacement of the jaw marker for the same production. The vertical lines are
the velocity zero crossings used to parse the kinematic signals. Panel C shows the vertical displacement of the jaw of the same participant
while chewing a cracker. Asterisks mark the closing landmarks that were selected algorithmically for the trial. RMS = root-mean-square.
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points. Panel C of Figure 2 depicts the non–speech task ki-
nematic parsing interface.

Spontaneous speech sample transcription and analysis.
All data acquisition, data reduction, and data analyses of
the conversational speech sample used well-developed pro-
cedures for research in pediatric SSD (Phonology Project
Laboratory Manual; unpublished). Narrow phonetic tran-
scription of the continuous speech samples was completed
by two experienced transcribers using procedures described
by Shriberg et al. (2010b). The procedure included percep-
tual use of diacritics sensitive to articulatory place, manner,
voicing, duration, and force. For instance, the check sym-
bol in the Clinical Phonetics system of diacritics was used
to indicate weakened articulatory force, most frequently for
weakly ploded voiceless stop consonants, which are common
signs in structural (e.g., velopharyngeal incompetence) and
motor (e.g., subtypes of dysarthria) SSD. In a study of tran-
scription reliability for children with SD that included
10 children from the present study, point-to-point interjudge
and intrajudge agreement were 86.7% and 91.8%, respec-
tively (Shriberg et al., 2010b). In that study, some estimates
of consonant and vowel transcription agreement were in
the mid-60% range, values that have also been reported in
prior estimates of broad and narrow phonetic transcription
agreement (McSweeny & Shriberg, 1995; Shriberg et al.,
1997a; Shriberg & Lof, 1991; Shriberg et al., 2005). The
2038 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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Shriberg et al. (2010b) estimate referenced previously re-
ported that agreement for narrow transcription averaged
6.1% lower than agreement for broad phonetic transcription.
One agreement estimate for the transcription system used
in the present study indicated that the standard error of mea-
surement was approximately 4% (Shriberg et al., 1997b).
Thus, there are commonly acknowledged constraints on
speech data from phonetic transcription; see Shriberg et al.
(2010b) for comparable constraints on the reliability of some
types of acoustic data.

Perceptual analyses. Perceptual analyses of the lexi-
cal stress task and the nonword repetition tasks were com-
pleted using the parsed audio signals. In the lexical stress
perceptual task, audio files for each child’s productions of
each of the bisyllables were presented in randomized order
in blocks of 10 participants (i.e., about 300 audio files in
each test block). Two listeners (graduate students in speech-
language pathology) assessed whether each item was pro-
duced with the intended phonemic target and identified
which syllable was stressed (first, second, or both, when
even stress was perceived). All 2,617 contrastive stress pro-
ductions were judged by two listeners. Joint probability
concordance between the two listeners was 89.1%. As can
be seen in Table 2, average phonemic accuracy was compa-
rable for trochees (78.8%; 1,066/1,352) and iambs (73.8%;
934/1,265); however, average accuracy of imitative stress
2033–2050 • December 2014
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Table 2. Perceptual analysis of lexical stress and nonword repetition tasks.

Type and
word

Attempted,
n

Phonemes correct Stress correct Overall

n % of attempted n % of attempted n % of attempted

Trochee
baba 447 350 78.3 358 80.1 304 68.0
mama 446 366 82.1 373 83.7 335 75.1
papa 459 350 76.3 356 77.6 289 63.0
Total 1,352 1,066 78.9 1,087 80.4 928 68.6

Iamb
baba 427 315 73.8 269 63.0 233 54.6
mama 423 333 78.7 245 57.9 223 52.8
papa 415 286 68.9 245 59.0 193 46.5
Total 1,265 934 73.8 759 60.0 649 51.3

Nonword
bada 476 366 76.9 NA NA 345 72.5
bama 466 266 57.1 NA NA 246 52.8
bamana 468 169 36.1 NA NA 158 33.8
manaba 444 113 25.5 NA NA 99 22.3
Total 1,854 914 49.3 NA NA 848 45.7

Grand total 4,471 2,914 66.2 1,846 70.5 2,425 54.2

Note. Includes number attempted and judged accuracy of phonemics and stress. Overall refers to the productions that were suitable for all
measures in the analysis, which required correct phonemics and stress, as well as viable kinematics (i.e., without movement artifact). NA =
not applicable.
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was better for trochees (80.4%; 1,087/1,352) than for iambs
(60.0%; 759/1,265). The phonemic accuracy of the nonword
repetition task productions was judged blindly (i.e., to pro-
duction, participant, and diagnostic status) using an open-
set, broad phonemic transcription task. No judgment of the
lexical stress of these productions was completed. The items
were presented to listeners randomized across participants
and production types. Three listeners judged each produc-
tion. Transcription decisions used a best-two-of-three crite-
rion (i.e., agreement by at least two of the three judges).
This criterion was reached for 95.2% (1,765/1,854) of the
productions. For the remaining productions, the raw video
file was reviewed by a single judge to finalize transcription.
Forty-nine percent (914/1,854) of the nonwords were judged
to be phonemically correct. Phonemic accuracy decreased
through the experimental paradigm from the first-attempted,
two-syllable productions to the final three-syllable produc-
tions, with a drop in accuracy from the two-syllable (88.1%;
616/699) to the three-syllable (30.9%; 282/912) productions
(bada, 76.8% [366/476]; bama, 57.1% [266/466]; bamana,
36.1% [169/468]; and manaba, 25.4% [113/444], in the order
produced in the protocol). Details for phonemic accuracy
are reported in Table 2.

Measures
Fifty-three continuous and three categorical variables

were processed for inclusion in the analysis. The measures
sampled four levels of observation, including auditory–
perceptual, acoustic, kinematic, and demographic domains.
This broad range of observations was predicated by the need
to avoid a priori assumptions of the number or types of
groups that might emerge from the analysis. Each domain
included a number of redundant measures for each type of
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speech production (i.e., two- or three-syllable productions),
which yielded overlapping samples of similar measures from
verbal productions across levels of difficulty. For some par-
ticipants, for instance, behavioral performance was similar
for both two- and three-syllable productions, whereas for
others, performance decreased substantially with the added
complexity of a three-syllable imitation. In addition, al-
though numerous measures have been reported, we did not
know which of the contributing measures would be most ef-
fective in identifying emergent groups of preschool children
with SSD. Descriptions of each measure can be found in
the supplemental materials. Means and standard deviations
for each measure are reported in Supplemental Table 1.

Subgroup Discovery
To identify previously unknown subgroups, the en-

tire data set was input to the SUBARP algorithm. Details
regarding the algorithm can be found in the Appendix,
and a schematic of the algorithm using a simple data set
can be found in Figure 3. Each participant in the present
data set was assigned a case number, consecutively from
the date of admission to the study. To initiate SUBARP,
odd-numbered cases were put in the training set and even-
numbered cases were assigned to the testing set (see Step 1
in Figure 3), with a net of 49 cases in the training set and
48 cases in the testing set.

Targets and attributes. Whereas only one of the five
measures in the example in Figure 3 was assigned as a tar-
get (i.e., color), 34 of the 53 measures from the data were
assigned as targets and the remaining 19 measures were des-
ignated nontarget attributes. In SUBARP, target measures
become the primary defining attributes of any discovered
subgroup. For this reason, only measures that would be of
Vick et al.: Subclassification of Speech Sound Disorders 2039
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Figure 3. Schematic of the SUBARP algorithm that documents the steps taken to discover subgroups. In the schematic, apples are used as
a simple example. A full explanation of SUBARP can be found in the Appendix. Specific sections of this explanation are referenced in each
section of the schematic.
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interest as defining attributes are selected as targets. For in-
stance, in this experiment in which a subgroup was sought
whose members had deficits in speech motor control, mea-
sures of articulatory variability were of interest as targets,
whereas demographic measures, such as age, were not. To
further refine the model, we only included as targets mea-
sures for which we had data from the largest number of
cases. For example, because most children in the sample
produced two-syllable tokens that could be analyzed, mea-
sures of performance on two-syllable productions were in-
cluded as targets. Three-syllable tokens, which were not
2040 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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produced by as many children, were submitted to SUBARP
as nontarget attributes. For highly correlated measures that
resulted from the Programs to Examine Phonetic and Pho-
nological Evaluation Records (PEPPER) analysis (e.g., per-
centage of consonants correct and revised percentage of
consonants correct) the revised version was selected as the
target. As defined in the Appendix, the revised versions do
not count distortions or allophonic variations as errors and
are more sensitive to differences in development and diag-
nostic groups (Campbell, Dollaghan, Janosky, & Adelson,
2007; Shriberg et al., 1997b).
2033–2050 • December 2014
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Each target measure was run through the SUBARP
algorithm iteratively as detailed in Figure 3. During each
iteration, other target measures served as nontarget attri-
butes from which logic rules could be generated for each
subgroup.

Running SUBARP. Discretization of each target oc-
curred after SUBARP sorted the records in ascending or-
der for the value of the target (see Step 2 in Figure 3). For
the discretization of targets, SUBARP was set to use as
many as 50 cut-points for each target. Given 49 training
records, this meant that SUBARP evaluated all possible
cut-points for each target. SUBARP created and evaluated
1,209 subgroups, each being defined by a rule involving a
target measure and two modifying rules involving attribute
measures (see Steps 4 and 5 in Figure 3). Preliminary test-
ing suggested that rules with one target and two attributes
were most interpretable. SUBARP used a compound mea-
sure of significance that calculated (a) the proportion of
cases that fulfilled the target rule that also fulfilled the addi-
tional attribute rules and (b) the likelihood that a similar
group could be generated using a random process (see Step 6).
Each significance value was calculated twice, once for the
training data and once for the testing data (see Step 8).
The average of the resulting two significance values was the
overall significance of the subgroup. Subsequently, a bino-
mial probability test was completed, resulting in a value rang-
ing from 0 to 1 (see Step 9). This test determined the extent to
which the target and attribute variables were related. Smaller
values suggested closely related target and attribute values.
For details of these computations, see the Appendix.

Selection of SUBARP solutions. Only solutions with
an overall significance of .95 or greater were retained, which
resulted in 13 potential subgroups for the present data. Next,
11 subgroup solutions were eliminated from consideration
because they intersected with other solutions (i.e., same tar-
gets and attributes but different cut-points) and were less
significant; although these solutions were statistically signifi-
cant, they were redundant permutations of the resulting two
subgroups. Thus, the target and attribute rules in Table 3
Table 3. Target and attribute (measures) rules defining each subgroup
and overall significance after subgroup identification using both the
training and testing sets.

Group and target–attribute rules Value

Subgroup A
Target: Proportion of tasks attempted >.72
Attribute 1: Proportion of tasks with correct phonemes >.36
Attribute 2: Proportion of iambic targets imitated with
correct stress

>.17

Overall significance .95
Binomial probability .0006

Subgroup B
Target: Proportion of iambic targets imitated with
correct stress

<.17

Attribute 1: Proportion of tasks attempted <.72
Attribute 2: Mean upper lip maximum displacement (cm) >.20
Overall significance .99
Binomial probability .036
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defined the remaining two subgroups, which made up the
results of the SUBARP analysis for the present data. The
significance levels obtained for each of the two subgroups
(.95 for Subgroup A and .99 for Subgroup B) suggested that
each rule set identified a distinct subgroup (i.e., <5% proba-
bility of finding these groups by chance). The significance
values (i.e., p < .05) from the binomial probability test sug-
gested a high degree of interrelatedness between the target
and attribute values specified in the rules, meaning that the
combined attributes had high predictive value for the targets.

The proportions of participants in the training and
testing sets of each subgroup were compared with a two-
proportion z test to confirm that these split samples were not
statistically different and that their sizes provided a reliable
estimate of population prevalence. To estimate the range of
population prevalence for the two subgroups, 95% confi-
dence intervals (CI) were calculated on the overall propor-
tion of participants in each group.

Statistical analyses of subgroups. The SUBARP rules
for membership specified the level of performance on six
measures that was necessary and sufficient to be included
in one of the two emergent subgroups. Performance on the
original 53 continuous measures by members of the two sub-
groups was compared using independent t tests. To adjust
the alpha level for multiple comparisons, the threshold for
statistical significance was set at p < .0007. The proportions
of each subgroup falling within each of the categories of the
dichotomous qualitative measures (i.e., sex and family his-
tory) were compared using chi-square tests. Forward-stepping
discriminant analysis (DA) was used to characterize and
graphically represent the two groups using the 47 continu-
ous behavioral, acoustic, and kinematic measures that were
not the target and attribute measures used to identify the
subgroups with SUBARP. Thirteen participants were not
classified in either of the two subgroups. These participants’
performance was also graphically represented using the DA.

Results
Two subgroups emerged from the SUBARP analysis as

statistically significant. The first subgroup, termed Group A
(n = 74), consisted of the majority (76.2%) of participants
in the sample, and the second subgroup, termed Group B
(n = 10), made up 10.3% of the sample. A total of 13 partic-
ipants (13.4%), termed not classified (NC), were not classi-
fied using the SUBARP routine. Supplemental Table 1
includes group-based performance data for each of the orig-
inal 53 continuous measures and Table 3 provides the target
and attribute rules that defined both subgroups.

DA was used to evaluate pairwise differences be-
tween Groups A and B on each of the 53 continuous mea-
sures; this analysis yielded a single linear DA factor. The
DA factor in this approach is the linear combination
of measures that provided the best separation between
members of Group A and members of Group B. Each
contributing measure from the model has an associated cor-
relation with the DA factor so that it is possible to identify
which measures best discriminated between the two groups.
Vick et al.: Subclassification of Speech Sound Disorders 2041
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Figure 4. Discriminant analysis (DA) results: Selected measures that
were positively correlated with Factor 1 appear on the right side of
the graph, and selected measures that were negatively correlated
with Factor 1 appear on the left side of the graph. NC = not classified.
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Significant correlations between the DA factor and the con-
tinuous measures are presented in Table 4. Figure 4 depicts
the performance of each participant on the continuum of
the DA factor. Participants with a high DA factor score
(Group B participants) had high scores on the measures
that had a positive correlation with the DA factor; partici-
pants with a low DA factor score (Group A participants)
had high scores on the measures that had a negative corre-
lation with the DA factor. For example, participants in
Group A had a high proportion of tasks with accurate pho-
nemics and no kinematic artifact, and the associated pro-
ductions tended to be produced with correct lexical stress
and phonemics; these measures were negatively correlated
with the DA factor. These associations permitted more de-
tailed descriptions of the individual group characteristics.

Group A Characteristics
Of the 74 participants in Group A, 48 (64.9%) were

male, which was not significantly different from the proportion
of boys in the entire sample, c2(1) = 0.48, p = .49. The mean
age of Group A members was 46.7 months (Index 52 in
Supplemental Table 1), which was not statistically different
from that of Group B (42.5 months), t(82) = −1.996, p = .049.
Of the total sample of 97 children, 33 (34%) had a positive
family history of communication disorders; 21 of the members
(28.4%) of Group A had a positive family history of com-
munication disorders, which did not differ significantly
from the percentage in the whole sample, c2(1) = 1.04, p =
.31. Of the total sample of 97 children, 13 (13.4%) were
classified as NSA by the SDCS. Ten children in Group A
were classified as NSA (13.5%); this relative proportion
was independent of group membership (i.e., Group A or B),
c2(4) = 3.77, p = .44. As predicted by the rules in SUBARP
that defined Group A membership, and compared with
Group B, individuals in Group A attempted more of the
target tasks (Index 1), t(82) = −22.57, p < .0001; produced
more phonemes accurately (Index 2), t(82) = −8.65, p <
.0001; and imitated iambic stress with greater accuracy
(Index 4), t(82) = −9.66, p < .0001. Performance for this
group also exceeded that of Group B on the other measures
Table 4. Significant positive and negative correlations of specific measure

Measure DA fa

Proportion with no phonetic errors and good kinematics (Index 5) −.6
Proportion trochees with correct stress (Index 3) −.6
Acoustic variability of iambic stress marking (Index 9) −.2
Age (Index 52) −.2
Intelligibility Index (Index 50) −.2
Trochees—jaw convergence index (Index 35) .2
Variability of lower lip maximum displacement (Index 18) .2
Two-syllable word duration (Index 10) .3
Variability of upper lip maximum displacement (Index 17) .4
Variability of jaw maximum displacement (Index 19) .5

Note. p < .05. Index numbers refer to Supplemental Table 1, which provi
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of task accuracy, including imitation of trochaic stress
(Index 3), t(82) = −6.1, p < .0001, and the overall propor-
tion of tasks that were produced without phonemic errors
and with usable kinematics (Index 5), t(82) = −6.88, p <
.0001. Most strikingly, the kinematic variables were a distin-
guishing characteristic of Group A compared with Group B.

The proportion of participants in the testing set who
met the performance criteria for Group A was not signifi-
cantly different from that of participants in the training
set (z = 1.18, p = .99997), which supported the suggestion
that the overall sample proportion (76.3%) was a good
estimate of the population prevalence of children with
SSD with characteristics like those of Group A. The esti-
mated 95% prevalence range for children with SSD whose
s with discriminant analysis (DA) factor.

ctor r Overall, M (SD) Group A, M (SD) Group B, M (SD)

54 0.54 (0.23) 0.63 (0.17) 0.28 (0.21)
03 0.80 (0.26) 0.88 (0.15) 0.47 (0.44)
90 43.21 (20.04) 42.97 (17.88) 27.98 (15.49)
33 46.02 (6.36) 46.70 (6.30) 42.60 (5.80)
27 88.42 (11.28) 90.12 (10.00) 83.52 (6.38)
58 22.78 (4.90) 22.43 (4.51) 25.81 (4.42)
78 38.99 (10.61) 37.06 (7.86) 44.36 (15.34)
18 11.27 (3.24) 11.15 (2.52) 12.22 (5.12)
29 43.49 (15.07) 40.02 (12.85) 57.30 (14.90)
11 34.87 (10.35) 32.14 (7.64) 45.99 (13.38)

des descriptive statistics for each measure.
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characteristics would be consistent with those of Group A
is 67.8%–84.8%.

Group B Characteristics

Of the 10 participants in Group B, 8 (80%) were male;
five (50%) had a positive family history of communication
disorders. Neither finding was significantly different from
the overall sample percentages of 68% (66/97) and 34%
(33/97), respectively, nonsignificant (ns) c2(1) = 0.66, and ns,
c2(1) = 1.14. The mean age of the children in this group
was 42.5 months (ns). None of the children in Group B was
identified as NSA by the SDCS. In addition to Group B’s
significant differences from Group A on task performance, a
number of other significant differences in Group B’s articula-
tory kinematics performance were observed. The SUBARP
rules that distinguished members of this group identified
mean maximum displacement of the upper lip (0.23 cm) as
significantly greater during speech tasks for members of
Group B than for members of Group A (0.19 cm; Index 14),
t(82) = 4.58, p < .0001. The coefficient of variation for
measures of maximum displacement of both the upper lip
and jaw during speech tasks was significantly greater for
Group B participants than for Group A participants, upper
lip (Index 17), t(82) = 3.91, p < .0001, and jaw (Index 19),
t(82) = 4.86, p < .0001. Higher values on these measures in-
dicated greater articulatory variability.

Also of note when describing salient characteristics
of children in Group B are the measures found to be signif-
icantly correlated with the DA factor that distinguished
children in Group B from children in Group A, as listed in
Table 4. Many of these measures were not found to be sig-
nificantly different between groups in the analysis of vari-
ance but may be important diagnostic markers. Children
in Group B were found to produce trochaic stress with
less accuracy (proportion correct = 0.47) than children in
Group A (0.88; Index 3), t(82) = −6.10, p < .0001, and
marked productions with iambic stress with less acoustic
variability. Children in Group B were slightly younger than
children in Group A (Group B, 42.6 months; Group A,
46.7 months; Index 52), t(82) = −2.00, p = .049. In addi-
tion, the overall percentage of intelligible words in the con-
versational speech sample was lower for children in Group B
(83.5%) than for children in Group A (90.1%; Index 50),
t(82) = −1.94, p = .056. Jaw movement for bisyllables with
trochaic stress was produced with greater word-level vari-
ability when productions in error were included (see Con-
vergence Index in Supplemental Materials) for children in
Group B (25.8) than for children in Group A (22.4; Index 35),
t(82) = 2.22, p = .029. Finally, two-syllable word duration
was greater in children in Group B (0.85 s) than in children
in Group A (0.77 s; Index 10); t(82) = 2.79, p = .007.

The proportions of participants assigned to Group B
in the training and testing sets were not significantly differ-
ent (z = −.298, p = .99998), suggesting that the overall
sample proportion (10.3%; 95% CI [4.3%, 16.46%]) was a
good estimate of SSD population prevalence for children
with characteristics consistent with Group B.
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Not Classified
Thirteen participants (13.4%) were not classified into

either Group A or Group B using the two solutions selected
from SUBARP. Of the NC group, 10 participants were
male (77%), ns, c2(1) = .48, and six had a positive family
history of communication disorders (46%), ns, c2(1) =
2.28. Because those children who were not classified would
not have any expected homogeneity, planned comparisons
of this group with the other subgroups were not made;
performance on each of the continuous measures is re-
ported in Supplemental Table 1. Figure 4 displays the NC
group relative to the other two groups on the DA factor
continuum that maximally separated Groups A and B.
The NC participants were uniformly distributed along this
continuum.
Discussion
This investigation was designed to answer two ques-

tions. The first—whether there is statistical support for a
subgroup of children with SSD who are distinguished by
measures consistent with atypical speech motor control—
was affirmed by the results. Two reliable subgroups were
identified within the sample of 97 children with SSD. The
first, Group A, consisted of a proportionally large (n = 74;
76%; 95% CI [67.8%, 84.8%]) subgroup of the participants,
whereas the second, Group B, consisted of a substantially
smaller (n = 10; 10.3%; 95% CI [4.3%, 16.46%]) number of
participants. Children in Group B were distinguished from
children in Group A by a number of measures, including
some that suggested atypical speech movement, providing
preliminary empirical support for a small SSD subgroup
with motor speech involvement, as has been proposed by a
number of investigators (e.g., Davis, 2005; Dodd, 1995a).
Crucially, this subgroup could not be distinguished with
measures that would typically be used in a clinical setting;
moreover, the differences in speech motor control observed
in this group would be subclinical. The second research
question asked which measures would best differentiate any
identified subgroups in the sample. The results provide a
number of candidate measures that are likely to be useful
in distinguishing the children in the two groups.

Groups A and B
One goal of this study was to determine whether any

emergent subgroups would be consistent with characteriza-
tions of SSD subgroups proposed in the SDCS (Figure 1;
Shriberg et al., 2011). The features of the two identified
groups do appear to be consistent with the SD and MSD-
NOS subgroups described in the SDCS (Shriberg et al.,
2010a). Specifically, the majority (76%) of sample partici-
pants were identified as Group A. A post hoc comparison
between the performance profiles of Group A participants
and those of a group of typically developing children de-
scribed previously (Vick et al., 2012) yielded no differences
between the groups across the measures reported in this
Vick et al.: Subclassification of Speech Sound Disorders 2043

4/14/2015



Downloa
Terms o
study, except that participants in Group A had more speech
sound errors using conversational speech measures, such
as the revised percentage of consonants correct.1 Of partic-
ular interest was that, as in children with typical speech
acquisition, participants in Group A had typical motor
speech skills as measured by speech and nonspeech articula-
tory kinematic variables. Collectively, this evidence suggests
that Group A participants belong to the proportionally
large SD class of the SDCS, who have no measurable speech
motor involvement.

In contrast, the relatively small number of partici-
pants (10.3%) in Group B had comparably poor speech
motor control, as evidenced by significantly higher articu-
latory variability on measures of upper lip, lower lip, and
jaw movement during repeated productions of two- and
three-syllable tokens. They also exhibited larger upper lip
displacements. Behaviorally, participants in Group B made
fewer attempts at the target tasks and produced fewer ac-
curate phonemes and less accurate lexical stress. The low
prevalence, increased speech motor variability, and behav-
ioral characteristics of Group B are consistent with the pu-
tative MSD subgroup termed MSD-NOS in the SDCS,
which includes children with suspected motor speech disor-
ders who do not meet the criteria for childhood apraxia
of speech or dysarthria (Shriberg, Lohmeier, Strand, &
Jakielski, 2012). From the results of the present study, the
estimated population prevalence of this subgroup is 4.3%–

16.46%. These are children with the potential to be at great-
est risk for persistent SSD (Shriberg et al., 2011). Future
studies should study children with characteristics of Group B
longitudinally to confirm the validity of this hypothesis.

The identification of this motor speech group using
nonprimary features of SSD, such as speech movement
variability, supports the finding that direct measures of the
primary features of developmental speech disorders are
not sufficient to differentiate clinically distinct populations
(Connaghan & Moore, 2013). For instance, participants
in both groups scored similarly on the measures resulting
from the PEPPER analyses of the conversational speech
samples (e.g., percentage consonants correct: Group A, 72%;
Group B, 70.3%), demonstrating that children in Group B
would be difficult to identify using only conventional mea-
sures of speech competence. Behaviorally, children in Group B
struggled with performing the tasks in the present research
protocol, which included imitating audio-recorded models
of nonsense words. They were less likely to attempt the tasks
(Group A, 98% attempted; Group B, 39% attempted) and,
when they did, were likely to produce the nonsense words
with speech sound errors (Group A, 74% correct; Group B,
1All of the measures from the PEPPER analysis were significantly
different between the children in Group A and the children with typical
speech acquisition from the Vick et al. (2012) study (p < .0001), with the
typical children scoring higher on all of the metrics. None of the other
measures were significantly different between the two groups with the
exception of proportion phonetics correct (Index 1), which approached
significance (p = .03; Group A, M = 0.74; typically developing children,
M = 0.80).

2044 Journal of Speech, Language, and Hearing Research • Vol. 57 •

ded From: http://jslhr.pubs.asha.org/ by a Health Sci Learning Ctr User  on 0
f Use: http://pubs.asha.org/ss/Rights_and_Permissions.aspx
31% correct), despite the composition of the models, which
included only the “Early 8” consonants /b/, /p/, /m/, and /n/
and the vowel /A/ (i.e., many other nonsense word tasks in-
clude diphthongs; Shriberg et al., 1997b). Relative to conver-
sational speech, this comparatively poor performance by
children in Group B during the protocol may reflect deficits
in one or more of several speech processing tasks, including
auditory–perceptual encoding, transcoding, and execution
during productions of the imitated segments (Shriberg et al.,
2012). Similarly, children in Group B were less accurate than
those in Group A when imitating iambic stress (Index 4;
Group A, 72% accurate; Group B, 2% accurate) and had sig-
nificantly longer two-syllable durations (Index 10; Group A,
0.77 s; Group B, 0.85 s), suggesting a relative weakness
in encoding suprasegmental elements (Ziegler, Staiger, &
Aichert, 2010). Taken together, the findings for children in
Group B are consistent with a subtype of SSD with behav-
ioral characteristics that suggest motor speech involvement.
These behavioral characteristics were corroborated by physio-
logical markers that confirmed subclinical deficits in speech
motor control that are not able to be identified with standard
clinical measures.

Upper lip maximum displacement was found to be
larger in Group B than in Group A. This was an interest-
ing finding, given that no difference was found for this
group in maximum displacement of either the jaw or the
lower lip. One potential explanation for the difference in
upper lip maximum displacement could be the unusual and
often inconsistent articulatory postures observed clinically
in children with suspected motor speech disorders underly-
ing their SSD. Subjectively, three of these children were
observed to have noticeable upper lip movement during
speech when the videos were reviewed for marker tracking.
It could well be that unusually large upper lip displace-
ments are a salient characteristic for at least some children
whose SSD results from underlying differences in speech
motor control. Maximizing upper lip displacements could
be used as a strategy for achieving a lip aperture goal if
other degrees of freedom, such as jaw elevation, are being
minimized in a pathological speech production system.

Given these findings, it was somewhat surprising to
note that a number of measures of word-level variability,
as measured by the spatiotemporal index, did not statisti-
cally differentiate Group B from Group A; the spatiotem-
poral index has been demonstrated to be a robust and
sensitive indicator of differences in performance among di-
agnoses (e.g., specific language impairment; Goffman,
1999). Other measures of speech movement variability,
specifically the coefficient of variation of maximum dis-
placement of the upper lip, lower lip, and jaw, were found
to be critical to the separation of Groups A and B with
post hoc DA, demonstrating that children in Group B pro-
duced movements with significantly greater variability than
those of children in Group A. This speaks to the explor-
atory nature of this approach and to the power of subgroup
discovery for this application. To identify the critical differ-
ences between children in the two groups, it was essential
to look for differences at the syllable level where maximum
2033–2050 • December 2014
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Figure 5. Two-factor DA results to identify factors that maximally
separated Group A, Group B, and the NC group. Positive values on
DA Factor 1 (abscissa) were correlated with high performance on
measures of movement stability (e.g., coefficient of variation on
lower lip displacement) and phonemic accuracy. Positive values on
DA Factor 2 (ordinate) were correlated with variable acoustic marking
of lexical stress and lower scores on average words per utterance.
Ellipses represent 99% confidence intervals.
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displacement was measured, as opposed to the word level.
It remains to be seen how these children would perform
with a phrase-level measure of kinematic variability.

SDCS classification (i.e., SD vs. NSA) was not sig-
nificantly different between the two identified groups. It
is unlikely that including children classified as NSA using
SDCS criteria (i.e., in the present context, likely consistent
with normalized speech because there were no reliable
age-inappropriate deletions or substitutions in continuous
speech) confounded the results of the analysis, although
the largest proportion of NSA children included in the
analysis were classified into Group A. The implication
of this finding is that SLPs typically use a number of speech
criteria to classify children as having SD other than those
used by the SDCS. These other factors are unlikely to be
associated with differences in speech motor control.

Not Classified
Thirteen participants in this study were NC (not mem-

bers of either Group A or B). As depicted in Figure 4, par-
ticipants in the NC group were evenly distributed along the
linear factor that distinguished participants in Groups A
and B. Comparison of this nonhomogeneous group with the
other groups would not meet the required assumption of
formal statistical analysis. Nonetheless, identification of dis-
tinguishing characteristics of this group of children was of
interest. To identify distinguishing characteristics of partici-
pants in the NC group, an additional forward-stepping DA
was run using the original 53 measures. An additional DA
factor was necessary to distinguish this group of participants,
as displayed in Figure 5. Participants in the NC group scored
relatively higher on DA Factor 2 than the participants in
Groups A and B. Consistent with higher scores on DA Fac-
tor 2, participants in the NC group had comparably higher
scores on measures of acoustic variability on productions
of both iambic and trochaic stress (Indices 8 and 9 in Sup-
plemental Table 1) and lower average words per utterance
(Index 51). Variability in lexical stress marking is consistent
with findings associating unstable lexical stress with child-
hood apraxia of speech (Shriberg et al., 2003; Skinder,
Connaghan, Strand, & Betz, 2000; Velleman & Shriberg, 1999),
supporting a hypothesis that participants in the NC group
may be a subgroup consistent with this diagnosis; additional
data would be needed to support this hypothesis. Further-
more, these participants are not necessarily a cohesive sub-
group, and their comparable performance on these tasks
cannot be characterized as a subgroup of SSD without fur-
ther analysis and validation, which was beyond the scope of
this experiment.

Clinical Implications
SLPs, as with all health care providers, have in-

creasingly been charged with adopting an evidence-based,
patient-centered approach to clinical decision making. This
enhanced level of clinical decision making requires the inte-
gration of patient preferences and research evidence with
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clinical expertise. Traditionally, the clinician’s experience
and acumen have driven the identification of children with
SSD who are suspected to have motor speech involvement,
because the absence of physiological markers precludes
objective measures (Strand et al., 2013). Using kinematic
measures, the results of the current study provided empiri-
cal support and physiological signs for the existence of a
motor speech subtype of SSD. Moreover, behavioral mea-
sures that exhibit the potential to be used as diagnostic
markers for an MSD-NOS subclassification were identi-
fied. For example, the most salient behavioral marker for
Group B was a child’s difficulty imitating lexical stress.
These children imitated bisyllables with trochaic stress with
less than 50% accuracy and iambic stress with less than
5% accuracy. Children in Group A, consisting of children
who did not evidence poorer performance on measures of
motor control, imitated bisyllables with these stress pat-
terns with 88% and 72% accuracy; these levels are similar
to those of children with typical speech acquisition, who
imitated these patterns with 82% and 73% accuracy (Vick
et al., 2012). The SUBARP analysis identified children in
Group B using a rule-based threshold of 17% or lower ac-
curacy in the imitation of iambic targets.

Implementation of this algorithmic rule into use as a
diagnostic marker might reasonably incorporate perfor-
mance on imitation of bisyllables in a battery of tasks for
Vick et al.: Subclassification of Speech Sound Disorders 2045
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identifying children with motor speech disorders. Round-
ing to 20% for convenience, a screening task might require
five iambic bisyllable imitations. Production of fewer than
two accurate imitations would be noted as a risk factor in
a child’s potential classification as having deficits in speech
motor control. The sensitivity for predicting Group B
membership using this diagnostic marker for the sample in
the current study (i.e., including Groups A and B and NC
participants) was 100% and specificity was 94%, which
suggests that bisyllabic iambic stress imitation could provide
good resolution for identifying children with MSD-NOS.
This simple imitative task could easily be incorporated into
diagnostic protocols and is, in fact, part of the recently pro-
posed Dynamic Evaluation of Motor Speech Skill (Strand
et al., 2013). As part of an overall assessment of motor
speech skill, the Dynamic Evaluation of Motor Speech Skill
scores the first attempt of lexical stress imitation as prosodi-
cally correct or incorrect. The addition of five repetitions
of a lexical stress bisyllable imitation might add to the va-
lidity and reliability of this measure, especially using a
threshold of 20% accuracy.

Considering the high prevalence of SSD in preschool-
age children (15.6%; Campbell et al., 2003) and the fact
that most of these children will normalize by early elemen-
tary school, clinicians must also use evidence-based guide-
lines for presenting a child’s likely prognosis in the support
of planned services, including therapeutic duration and in-
tensity. In addition to incorporating measures of speech
motor control, such as the Dynamic Evaluation of Motor
Speech Skill, into diagnostic practice, population prevalence
estimates may guide health care policy and treatment guide-
lines regarding the burden on health care and development
presented by SSD. Findings from the current study indi-
cated that the estimated prevalence of preschool children with
SSD without signs of motor involvement is 67.8%–84.8%
(i.e., using 95% CI). The characteristics of these children
were likened to the class of SSD termed SD in the SDCS.
Children meeting SDCS criteria for SD are proposed to
have individual and multiple causal pathways to their
speech deficits, with data currently unavailable on normal-
ization rates among the three putative subtypes of SD de-
scribed in Shriberg et al. (2010a).

With this prevalence estimate, the remaining 15%–30%
of preschool children with SSD would fall in the MSD sub-
class of the SDCS and would be at the highest risk for per-
sistent SSD. This finding is consistent with the estimate that
25% of children with SSD will have speech features that
persist past age 6 years (Flipsen, 2003; Goozée et al., 2007;
Shriberg et al., 2010a). Direct measurement of speech move-
ment in the present study indicated that 4%–16% of children
with SSD exhibit deficits in speech motor control consistent
with the characteristics identified in Group B. These defi-
cits were consistent with those posited for the SDCS MSD-
NOS subclass, a placeholder for children with evidence of
a motoric impairment that is not consistent with childhood
apraxia of speech or dysarthria (Shriberg et al., 2010a).
Delaney and Kent (2004) estimated the prevalence of child-
hood apraxia of speech to be 3.4%–4.3% among children
2046 Journal of Speech, Language, and Hearing Research • Vol. 57 •
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with SSD. The remaining proportion of children with SSD
would then be accounted for by childhood dysarthria.
These estimates should help guide health care policy and
clinical decision making for preschool children with SSD.

Methodological Implications
The current findings support the utility of the SUB-

ARP as a useful alternative to conventional subgrouping
approaches, such as cluster analyses, for studies attempting
to identify conceptually and clinically informative subgroups
of a disorder using a data-driven approach. The SUBARP
approach offered several advantages for this analysis, includ-
ing the ability to identify small subgroups, using data-driven
decision making to establish the validity of subgroups, and
providing interpretable information about which measures
distinguish each identified subgroup. This is in contrast to
other machine-learning methods, such as support vector
machines, in which the generated rules are mathematical
formulas that are challenging to interpret. These key bene-
fits of SUBARP made it ideal for the current study and
demonstrated the feasibility of it and other subgroup dis-
covery methods for comparable investigations in the be-
havioral and social sciences that seek to identify subgroups.

Limitations
Although the size and scope of this investigation pro-

vided support for the assertion that there is a small sub-
group of children with SSD who exhibit differences in motor
speech performance, some limitations should be noted. Stan-
dardized measures of language and speech are not available
for the current participants. These scores would provide a
perspective on how children in the two subgroups would
perform clinically and how standardized measures of per-
formance may vary in the two groups. Future work should
catalog a number of standard diagnostic measures along
with performance on the tasks used in this study to provide
a more robust clinical picture of children in the two sub-
groups. As suggested previously, it is unlikely that currently
available standardized measures of speech competence would
be sufficiently sensitive to differences in speech motor con-
trol. It is also worth noting that although all participants
in the current study passed a screening for receptive lan-
guage, the presence of concomitant expressive language dis-
orders was not explicitly ruled out. Children with specific
language impairment have been shown to have measurable
differences in speech motor control, especially in produc-
tion of contrastive lexical stress (Goffman, 1999). From the
spontaneous speech sample, average words per utterance
(Supplemental Table 1, Index 51) was measured to estimate
expressive language function and verbal productivity. Chil-
dren in Group B, who had comparably poor ability to imi-
tate iambic lexical stress, did not perform differently from
children in Group A on this measure, suggesting that chil-
dren in the two groups had similar lexical productivity.
Differences in syntax and vocabulary were not assessed,
however.
2033–2050 • December 2014
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Conclusions
The goal of the present study of SSD was to seek em-

pirical support for subgroups within the population of chil-
dren with SSD. Using a data-driven, algorithmic approach,
evidence emerged for two groups whose performance con-
trasted reliably on measures that suggested differences in
speech motor control. Using the SDCS as an organizing
framework within which the two subgroups might be de-
scribed, the larger of the two emergent groups (76%) was
thought to be consistent with the class of SSD termed SD,
whereas the smaller group (10.3%) was thought to be con-
sistent with the subgroup of SSD provisionally termed
MSD-NOS. Given the relatively low estimated population
prevalence of the MSD-NOS subgroup (as low as 4.3% in
this study), it was essential to use a subgroup discovery
method with the capacity to identify individuals with SSD
who share the characteristics that defined this group. Fu-
ture work may extend these findings to other samples of
preschool-age children with SSD using subgroup discovery
methods, with the goal of including more measures of
linguistic and lexical stress performance that may help to
identify individuals with other types of pediatric motor speech
disorders, particularly to discriminate among those with
childhood apraxia of speech, dysarthria, and MSD-NOS.
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Appendix (p. 1 of 2)

Explanation of SUBARP

SUBARP is a subgroup discovery method, a technique falling under the umbrella of machine learning. It seeks to identify
comprehensible groups within a set of data. The technique identifies patterns in the data that create rules that are intended
for interpretation using the measures in the data set. In SUBARP, the data set is divided into training and testing sets of about
equal size. In the terminology of subgroup discovery, measures of the data sets are called attributes. Thus, the values of the
measures for an individual child are the values of the attributes of a record of the training or testing set. In an iterative process,
the method declares one attribute to be a target and then tries to explain the variations in the values of that target by the values
of the remaining attributes, where the explanations are humanly comprehensible rules. The method is designed to identify
relatively rare subgroups within a small sample while processing a large number of measures. The technique also calculates
statistical likelihoods that estimate the prevalence of any discovered subgroups within the population.

The algorithm processes each target separately in three steps.
1. Target values are discretized.

2. Values of the remaining attributes are used to explain the discretized target values.

3. From these explanations, interesting subsets of the records are derived.

Before commencing, the data set is divided equally into training and testing sets. SUBARP derives the important relationships
and their significance from the training set. Then the testing set is used to determine whether these relationships exist in a
second group. The probability of the coincidental discovery of groups with the same target and attribute rules is the measure
of statistical significance. The result is a series of subgroups whose explanatory attributes achieve a level of significance that
exceeds a predetermined threshold (e.g., 0.90).

Target Discretization

Let t be a target. The target t is discretized by the introduction of cut-points. Consider one such cut-point c. Let A be the
subset of records with target value above the cut-point c and B be the subset of the remaining records. The cut-points are so
chosen that A or B potentially contains an important subgroup. A more elaborate use of cut-points is also possible. There, two
cut-points, c and d, say with c < d, are used, and the set A is the subset of records with target values falling into the interval
defined by c and d. For large data sets, SUBARP uses an analysis of the pattern of target values to define the cut-points. For
small data sets, such elaborate analysis is likely not useful. Instead, the target values are sorted and n cut-points are defined,
where n ranges from 10 to 50. For each pair of subsets A and B, the remaining work of the algorithm is to explain the
differences between these two subsets using the other attributes. The first step of that process involves feature selection.

Feature Selection

The set A is repeatedly partitioned into subsets A1 and A2; correspondingly, subsets B1 and B2 of B are specified.
SUBARP finds a logic formula that achieves the value True on the records of A1 and False on those of B1. It then tests how
often the same formula achieves True for A2 and False for B2. In all, 40 logic formulas are created. Within these 40 formulas,
the frequency with which a given explanatory attribute is used suggests the importance of that attribute in explaining the
differences between the sets A and B. A significance value is calculated for each explanatory attribute. Those with a
significance value exceeding a threshold are selected for the next step, in which explanations of the differences between A
and B are computed.
Vick et al.: Subclassification of Speech Sound Disorders 2049
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Computation of Explanations

With the selected attributes, two formulas are calculated. The first evaluates to True for the records of A and to False for
those of B. The second formula evaluates to the opposite True–False values for the subsets. Both formulas consist of one or
more clauses combined by OR. Each clause contains linear inequality terms combined by AND. For example, [(x < 4) AND ( y > 3)]
OR [(x < 3) AND ( y > 2)]. Each of the two clauses in the example divided by OR is referred to as a factor. Both factors in the
example contain specifications for critical values of the two attributes x and y. Because of the structure of the formulas, the
following relationships hold: Each factor of the first formula evaluates to True for a subset of A and to False for the entire set B.
That subset of A is a potentially important subgroup. By these definitions, the subgroup is completely specified by the target
discretization condition defining A and the factor. Thus, it is given by some linear inequalities involving the target and the
attributes occurring in the factor. Analogously, each factor of the second formula evaluates to True for a subset of B and to
False for the entire set A. That subset of B is a potentially important subgroup, with a corresponding description involving linear
inequalities. The next step selects factors, and thus subgroups, that are significant.

Factor Selection

The subgroups identified via the targets and factors may or may not characterize important configurations that are both
interesting and useful. To estimate which case applies, SUBARP calculates a significance value for each subgroup, once more
using the training data. For the discussion, consider the case where the subgroup is a subset of A. The significance value is
the average of two values. The first value is the fraction of the size of the subgroup divided by the size of A. The second value
is 1 minus the probability that a certain random process can generate the subgroup. That random process is called an alternate
random process (ARP). It is one of several such ARPs used by SUBARP to evaluate whether a decision is possibly based
on random effects or relies on structural results that very likely are not produced by some random process. Analogous
computations involving the testing data instead of the training data produce a second significance value for each subgroup.

Evaluation of Subgroups

The average of the significance values obtained from the training and testing sets is assigned as overall significance.
Only subgroups resulting from logic formulas with overall significance greater than 0.95 are considered potentially useful and
subjected to the final test of statistical significance.

Test of Statistical Significance

Recall that each subgroup is defined by inequalities involving a target and the variables of a factor. Thus, there are
target inequalities and factor inequalities. From the derivation of these inequalities, each record of the training set satisfying
the factor inequalities also satisfies the target inequalities. If the subgroup is truly significant, then a similar result should hold
for the testing records. That is, almost all testing records satisfying the factor inequalities should satisfy the target inequalities.
This is tested via the binomial distribution using a suitably estimated probability that a randomly selected record satisfies the
factor inequalities. The result of this test provides a statistical measure of the importance of the relationship, relative to chance.
Only subgroups with significance values that are very small are considered for further interpretation.
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