A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay

Lawrence D. Shriberg^a

Edythe A. Strand^b

^aWaisman Center University of Wisconsin-Madison

^bDepartment of Neurology Mayo Clinic-Rochester

Seventeenth Biennial Conference on Motor Speech: Motor Speech Disorders & Speech Motor Control Sarasota, FL, February 26 - March 2, 2014

Premises

- Both Childhood Apraxia of Speech (CAS) and Speech Delay (SD) are characterized by delays in auditory and somatosensory representational and feedback processes (Shriberg, Lohmeier et al. 2012).
- CAS is characterized by additional deficits in transcoding (planning/programming) and feedforward processes.
- A highly valued diagnostic marker of CAS requires conclusive psychometric support for one crosslinguistic, lifespan sign that identifies and quantifies the transcoding and feedforward deficits.

Speech Disorders Classification System (SDCS)^a

IV. Diagnostic Markers

(Criterial Signs of Phenotype)

Speech Disorders Classification System (SDCS)^a

IV. Diagnostic Markers

(Criterial Signs of Phenotype)

Framework Preliminaries Method Findings

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates^a

Dual Stream Neurodevelopmental Framework

 Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])

Conclusions

Neurodevelopmental Substrates of CAS Cast Within a Dual Stream Framework

Ventral Stream

Earlier Ontogeny

Auditory

Perception

Phonemic

Semantic, Syntactic

Instantiated

Dorsal Stream

Later Ontogeny

Somatosensory

Production

Phonetic

Articulatory

Novel

IV. Diagnostic Markers

(Criterial Signs of Phenotype)

Method

Findings

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates^a

Dual Stream Neurodevelopmental Framework

- Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])
- Generic Speech Processing Framework

Framework

 Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

Method

Findings

Conclusions

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates^a

Dual Stream Neurodevelopmental Framework

- Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])
- Generic Speech Processing Framework

Framework

 Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

Method

Findings

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates^a

Dual Stream Neurodevelopmental Framework

- Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])
- Generic Speech Processing Framework
 - Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

CAS

Framework

Framework Preliminaries Meth

Finding

Speculative Integration of Four Candidate Signs of CAS with the Dual Stream and Speech Processes Frameworks^a

SDCS I	_evel I	SDCS Level II	SDCS Levels		_evels III	I & IV		
Dual Stream		Speech Processes		Four Signs				
Framework		Framework	of CAS					
Ventral	Dorsal		Rate	Pauses	Stress	Transcoding		
Х		Representation	Х	Х	Х	X		
Х		Planning	Х	Х	Х	X		
Х	Х	Programming	Х	Х	Х			
Х	Х	Feedforward	Х	Х	Х			
	Х	Execution	Х					
Х	Х	Feedback	Х					

Framework Preliminaries Method Findings Conclusions

('Seven Attributes of') Highly Valued Diagnostic Markers^a

Construct	Premise	Rationale
Accuracy	The higher the diagnostic accuracy of a diagnostic marker the more highly valued in research and clinical settings.	Diagnostic markers deemed conclusive for a disorder require >90% sensitivity and >90% specificity, yielding positive and negative likelihood ratios of at least 10.0 and at most .10, respectively.
Reliability	The higher the reliability of a diagnostic marker the more highly valued in research and clinical settings.	Reliable diagnostic markers have robust point-by-point intrajudge and interjudge data reduction agreement and internal and test-retest stability of scores, each estimated across relevant participant heterogeneities.
Coherence	The greater the theoretical coherence of a diagnostic marker the more highly valued in research and clinical settings.	As portrayed in Figure 1, conclusive diagnostic markers (Level IV) for each of the putative SSD subtypes (Level III) are highly valued for integrative descriptive-explanatory accounts when tied to their genomic, environmental, and developmental neurocognitive and sensorimotor substrates (Levels I and II).
Discreteness	Diagnostic markers from discrete, on-line events are more highly valued than diagnostic markers derived from off-line tallies of events.	Behavioral signs that that can be spatiotemporally associated with neurological events have the potential to inform explanatory accounts of speech processing deficits and identify biomarkers.
Parsimony	The fewer the number of signs in a diagnostic marker the greater its theoretical parsimony and psychometric robustness.	Each sign required for a diagnostic marker adds theoretical complexity and requires additional (multiplicative) psychometric stability.
Generality	The more extensive the generality of a diagnostic marker the more highly valued in research and clinical settings.	Diagnostic markers with the most extensive external validity may be used to identify risk for future expression of disorders, identify active expression of a disorder, and postdict prior disorder.
Efficiency	The greater the efficiency of a diagnostic marker the more highly valued in research and clinical settings.	More highly valued markers require the fewest tasks, equipment, examiner proficiencies and participant accommodations and the least time and costs to administer, score, and interpret.

^aShriberg et al. (2014). *A pause marker to discriminate Childhood Apraxia of Speech from Speech Delay.* Manuscript in preparation. The seven constructs are listed in their estimated rank order of importance.

Framework Pr	eliminaries	Method	Findings	Conclusions

Participants

	-									
	O al ant	T '41			6	\mathbf{D}		Percei	ntage of	f Consonants
Group	Cohort	litle	n		Age (yr	'S)	% Males		Correct	t (PCC)
					0.0	B			0.0	D
				IVI	SD	Range		IVI	SD	Range
Suspected										
Childhood Apraxia	Idiopathic									
of Speech (CAS)	CAS	CASI	41	8.7	4.1	4 – 23	65.9	76.6	13.5	36.8 - 98.4
	Neurogenetic									
	CAS ^a	CASN	23	10.6	4.8	4 – 25	47.8%	75.8	12.3	44.9 – 92.2
		Total	64	0.2	11	4 25	50 /9/	76.4	12.0	26.9 0.9.4
			04	9.5	4.4	4 - 25	59.470	70.4	13.0	30.0 - 90.4
	A									
Adult-onset Apraxia	Apraxia	100		00.4	40.0	45 00	70.0	04.0	- 4	00.0.00.4
of Speech (AAS)	of Speech	AUS	14	62.1	10.9	45 - 82	78.6	91.6	7.4	68.9 - 99.4
	Primary									
	Progressive									
	AOS	PPAOS	16	72.4	9.1	53 - 84	56.3	92.4	6.1	74.0 – 97.9
		Total	30	67.6	11.1	45 - 84	66.7	92.0	6.7	68.9 – 99.4
			(
Speech	Clinical									
Delay (SD)	Cohort	SD1	88	4.3	1.3	3-9	73.0	72.4	12.9	17.5 - 99.1
	Research									
	Cohort	SD2	23	5.5	0.6	5-7	72.7	81.8	7.3	62.7 - 91.3
	Research									
	Cohort	SD3	84	39	07	3-5	71.4	69.6	98	362-872
	Research	000	01	0.0	0.1	0 0	,	00.0	0.0	00.2 01.2
	Cohort	SD4	30	45	0.9	3-7	48.3	68.8	114	42 1 - 82 8
		504	50	4.5	0.3	5-7	40.0	00.0	11.4	72.1 - 02.0
		Total	225	12	1 1	2 0	60.2	71.9	117	17.5 00.1
		TOIAL	223	4.3	1.1	3-9	09.2	11.0	11.7	17.5 – 99.1

^a Includes participants with copy number variants (n=11) identified in related research, and participants with neurodevelopmental disorders associated with disruptions in *FOXP2* (n=4), 4q;16q translocation (n=3), 16p11.2 microdeletion syndrome (n=2), terminal deletion of chromosome 22 (n=1), Joubert syndrome (n=1), and Prader Willi syndrome (n=1).

Madison Speech Assessment Protocol (MSAP)

Four age-based protocols:

Preschool, school-aged, adolescent, adult

Each protocol includes 15 speech tasks

- Articulation Task
- Challenging Word Tasks (2)
- Challenging Phrase Task
- Consonants Task
- Conversational Sample

- DDK Task
- Phonation Task
- Syllable Repetition Tasks (2)
- □ Stress Tasks (2)
- Vowel Tasks (3)

Framework Preliminaries Method Findings Conclusions

Gold Standard: CAS Classifications Using a Pediatric Adaptation of the Mayo Clinic System (MCS)^a

Classification of a speaker as positive for CAS (CAS+) requires at least 4 of the following 10 signs in at least 3 speech tasks:

- vowel distortions
- difficulty achieving initial articulatory configurations or transitionary movement gestures
- equal stress; lexical or phrasal stress errors
- distorted substitutions
- □ syllable or word segregation
- **g**roping
- intrusive schwa
- voicing errors
- slow speech rate and/or slow DDK rates
- increased difficulty with multisyllabic words

^aDr. Strand provided written anecdotal comments on the sources and rationale for each classification.

mework

Pause Marker (PM) Method

- 1. Transcribe and prosody-voice code 24 utterances from a conversational speech sample
- Complete acoustics-aided procedures to identify occurrences of eight types of inappropriate between-word pauses in each utterance:

Type I pauses: abrupt, change, grope, otherType II pauses: addition, repetition/revision, long, breath

3. Calculate PM percentage:

100 x (1 – No. Type I Pauses/No. Pause Opportunities) where No. Pause Opportunities = No. words - No. utterances

4. Criterion for CAS+: PM < 95%^a

^aCAS+ classification for marginal PM scores (94.5% – 95.5%) requires positive findings on at least two of three supplementary standardized signs of CAS (Slow Articulatory Rate, Inappropriate Sentential Stress, Transcoding Errors).

Framework Preliminaries Method Findings

Conclusions

Expand Utt. 21

Play Utt. 21

Speed

Procedures to Resolve MCS-PM Classification Disagreements

- Assembled best estimates of 'true positive' and 'true negative' CAS groups:
 - Consensus CAS+ Group (n = 35):

participants classified CAS+ by both diagnostic markers

- Consensus CAS- Group (n = 15):

participants classified CAS- by both diagnostic markers

2. Computed descriptive and inferential statistics for relevant demographic and speech variables for and between the two CAS consensus groups; compared findings for each disagreement to findings for the two CAS consensus groups

Procedures to Resolve MCS-PM Classification Disagreements

- 3. Determined case-by-case support for resolving each MCS-PM classification disagreement as either due to conceptual differences in MCS vs. PM criteria for CAS+, or as 'questionable' due to either method constraints (e.g., insufficient MSAP data) and/or statistical support consistent with the alternative Consensus CAS group
- 4. Recalculated the estimated diagnostic accuracy of the PM with all 'questionable' disagreements excluded.

MCS-PM Classification Agreement Findings: 64 Participants Suspected Positive for CAS

MCS-PM Classification Agreement Findings: 30 Participants with AAS (AOS and PPAOS)

nework

Findings

Conclusions

Conclusions

- The PM provides a single-sign marker that likely can be used cross-linguistically to discriminate CAS from SD, and to scale the severity of CAS.
- The Type I pauses identified and quantified by the PM have theoretical 'Coherence.' The claim is that these atypical cessations of continuous speech are consequent to deficits in planning, programming, and/or feedforward processes.
- PM findings are interpreted to meet six of the seven proposed criteria for a highly valued diagnostic marker of CAS, requiring additional research to improve 'Efficiency.'

Research Directions

Methodological

- Cross-validate the current, estimates of intrajudge and interjudge reliability of the PM (low-to mid 80%)
- Cross-validate the current acoustic correlate (steep amplitude rise time) of the most frequent type of inappropriate pause (Type I: 'abrupt') and explore automated detection of 'abrupt' pauses
- Develop alternatives to continuous speech samples for speakers suspected positive for CAS who have limited verbal output
- Assess the specificity of the PM for speakers with different types of dysarthria

Research Directions

Substantive

- Assess the informativeness of the PM in collaborative neuroscience studies to explicate the genomic and neural correlates of planning, programming, and feedforward deficits in CAS and AAS toward a biomarker of apraxia of speech.
- Assess the utility of the PM in collaborative studies to characterize normalization processes in CAS and to quantify treatment efficacy in studies of CAS and AAS.

Acknowledgments

Waisman Center Phonology Project **University of Wisconsin-Madison**

Database Collaborators

Marios Fourakis	Heather Mabie	Adriane Baylis	Katharine Odell
Sheryl Hall	Jane McSweeny	Richard Boada	Bruce Penningto
Andrew Holt	Alison Scheer-Cohen	Thomas Campbell	Nancy Potter
Heather Karlsson	Christie Tilkens	Jordan Green	Erin Redle
Joan Kwiatkowski	David Wilson	Kathy Jakielski	Heather Rusiew
		Barbara Lewis	Jennifer Vannes

Christopher Moore

Pennington Potter edle er Rusiewicz

er Vannest

This research is supported by the National Institute on Deafness and Other Communication Disorders [DC00496] and a core grant to the Waisman Center from the National Institute of Child Health and Development [HD03352]. Dr. Shriberg and Dr. Strand have no financial or non-financial relationships to disclose.

References

- Friederici, A.D. (2012). Language development and the ontogeny of the dorsal pathway. Frontiers in Evolutionary Neuroscience, 4, 1-7. Adapted from Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., Poloniato, A., Lohmann, G. & Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108, 16056-16061.
- Guenther, F.H., Ghosh, S.S., & Tourville, J.A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. *Brain and Language*, *96*, 280-301.
- Guenther, F.H., & Vladusich, T. (2012). A neural theory of speech acquisition and production. *Journal of Neurolinguistics*, 25, 408-422.
- Hickok, G. (2012). Computational neuroanatomy of speech production. *Nature Reviews Neuroscience*, *13*, 135-145.
- Hickok, G. (2012). The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. *Journal of Communication Disorders*, *45*, 393-402.
- Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. *Neuron*, *69*, 407-422.
- Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. *Trends in Cognitive Sciences*, *4*, 131-138.
- Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. *Cognition*, *92*, 67-99.
- Maassen, B. (2002). Issues contrasting adult acquired versus developmental apraxia of speech. *Seminars in Speech and Language*, 23, 257-266.
- Nijland, L. (2003). *Developmental apraxia of speech: deficits in phonetic planning and motor programming*. Doctoral dissertation. University of Nijmegen, Nijmegen, the Netherlands.
- Nijland, L., Maassen, B., & Van der Meulen, S. (2003). Evidence of motor programming deficits in children diagnosed with DAS. *Journal of Speech, Language, and Hearing Research, 46*, 437-450.

References

- Nijland, L., Maassen, B., Van der Meulen, S., Gabreëls, F., Kraaimaat, F. W., & Schreuder, R. (2003). Planning of syllables in children with developmental apraxia of speech. *Clinical Linguistics & Phonetics*, *17*, 1-24.
- Poeppel, D., Emmorey, K., Hickok, G., & Pylkkänen, L. (2012). Towards a new neurobiology of language. *The Journal of Neuroscience*, 32, 14125-14131.
- Potter, N.L., Shriberg, L.D., Fourakis, M., Karlsson, H.K., Lohmeier, H.L., McSweeny, J., Tilkens, C.M., & Wilson, D.L. (2012). A reference database for research in Speech Sound Disorders (SSD): 3- to 18-yearold typical speakers (Tech. Rep. No. 18). Phonology Project, Waisman Center, University of Wisconsin-Madison.
- Preston, J.L., Felsenfeld, S., Frost, S.J., Mencl, W.E., Fulbright, R. K., Grigorenko, E.L. . . Pugh, K.R. (2012). Functional brain activation differences in school-age children with speech sound errors: speech and print processing. *Journal of Speech, Language, and Hearing Research*, *55*, 1068-1082.
- Preston, J.L., Molfese, P.J., Mencl, W.E., Frost, S.J., Hoeft, F., Fulbright, R. K., . . Pugh, K.R. (2014). Structural brain differences in school-age children with residual speech sound errors. *Brain & Language*, *128*, 25-33.
- Shriberg, L.D. (February, 2013). *State of the Art in CAS Diagnostic Marker Research.* Review paper presented at the Childhood Apraxia of Speech Association of North America Speech Research Symposium, Atlanta, GA.
- Shriberg, L.D. (March, 2010). Speech and genetic substrates of Childhood Apraxia of Speech. Paper presented at the Fifthteenth Biennial Conference on Motor Speech: Motor Speech Disorders & Speech Motor Control, Savannah, GA.
- Shriberg, L.D. (July, 2009). *Genetic and other research directions in Childhood Aparaxia of Speech*. Paper presented at the 2009 National Conference on Childhood Apraxia of Speech, St. Charles, IL.
- Shriberg, L.D., Lohmeier, H.L., Campbell, T.F., Dollaghan, C.A., Green, J.R., & Moore, C.A. (2009). A nonword repetition task for speakers with misarticulations: The Syllable Repetition Task (SRT). *Journal of Speech, Language, and Hearing Research*, *52*, 1189-1212.

References

- Shriberg, L.D., Lohmeier, H.L., Strand, E.A., & Jakielski, K.J. (2012). Encoding, memory, and transcoding deficits in Childhood Apraxia of Speech. *Clinical Linguistics & Phonetics*, 26, 445-482.
- Shriberg, L.D., Strand, E.A., Fourakis, M., Hall, S., Holt, A., Jakielski, K.J. . . Tilkens, C.M. (2014). *A pause marker to discriminate Childhood Apraxia of Speech from Speech Delay*. Manuscript in preparation.
- Shriberg, L.D., Strand, E.A., & Jakielski, K.J. (March, 2012). Diagnostic Signs of Childhood Apraxia of Speech in Idiopathic, Neurogenetic, and Complex Neurodevelopmental Contexts. Paper presented at the Sixteenth Biennial Conference on Motor Speech: Motor Speech Disorders & Speech Motor Control, Santa Rosa, CA.
- Terband, H. (2011). Speech motor function in relation to phonology: Neurocomputational modeling of disordered development. Proefschrift, Rijksuniversiteit Groningen. ISBN 978-90-367-4749-4 (printed version); ISBN 978-90-367-4798-1 (electronic version).
- Terband, H., Maassen, B., Guenther, F.H., & Brumberg, J. (2009). Computational neural modeling of speech motor control in childhood apraxia of speech (CAS). *Journal of Speech, Language, and Hearing Research, 52,* 1595-1609.
- Terband, H., Maassen, B., Guenther, F.H., & Brumberg, J. (2014). Auditory-motor interactions in pediatric motor speech disorders: Neurocomputational modeling of disordered development. *Journal of Communication Disorders*, http://dx.doi.org/10.1016/j.jcomdis.2014.01.001
- Terband, H., Maassen, B., van Lieshout, P., & Nijland L. (2011). Stability and composition of functional synergies for speech movements in children with developmental speech disorders. *Journal of Communication Disorders, 44, 59-74.*
- van der Merwe, A. (2009). A theoretical framework for the characterization of pathological speech sensorimotor control. In M. R. McNeil (Ed.), *Clinical management of sensorimotor speech disorders* (2nd ed., pp. 3–18). New York: Thieme Medical Publishers.
- Ziegler, W., Aichert, I., & Staiger, A. (2012). Apraxia of speech: concepts and controversies. *Journal of Speech, Language, and Hearing Research, 55,* S1485-S1501.