Diagnostic Markers of Childhood Apraxia of Speech

Lawrence D. Shriberg^a

Kathy J. Jakielski^b

Edythe A. Strand^c

^aWaisman Center University of Wisconsin-Madison ^bDepartment of Communication Sciences and Disorders Augustana College

^cDepartment of Neurology, Mayo Clinic-Rochester

American Speech-Language-Hearing Association National Convention, Philadelphia, PA November 18, 2010

Slide 1

Acknowledgments

Collaborators for Motor

Speech Projects

Morton Gernsbacher Bruce Tomblin

Leonard Abbeduto

Stephen Camarata

Thomas Campbell

Kathy Chapman

Peter Flipsen, Jr.

Hill Goldsmith

Kirrie Ballard

Adriane Baylis

Jordan Green

Barbara Lewis

Rhea Paul

Nancy Potter

Angela Morgan

Erin Wilson

Christopher Moore

Sharynne McCleod

Waisman Center Phonology Project

University of Wisconsin-Madison

Jane McSweeny

Gordana Raca

Gregory Rice

Shelley Smith

Elizabeth Worthey

Alison Scheer-Cohen

Marios Fourakis

Heather Karlsson Sonja Tatro

Joan Kwiatkowski Christie Tilkens

Heather Lohmeier David Wilson

Biostatistics and Genomics

Sheryl Hall

Roger Brown

David Dimmock

Craig Jackson

Jennifer Laffin

Disclosure Statement

We have no financial or non-financial interest in any organization whose products or services are described, reviewed, evaluated, or compared in the presentation.

Slide 2

Diagnostic Markers of Childhood Apraxia of Speech

- I. Rationale
 - A. Genomic
 - B. Diagnostic

II. Methods

- A. Data Acquisition and Reduction
- **B. Analytic Framework**
- C. Methodological Constraints

III. Results

- A. Promising Diagnostic Markers
- **B.** Group and Subgroup Comparisons
- IV. Discussion

Slide 3

This research is supported by the National Institute on Deafness and Other Communication Disorders [DC00496], an American Recovery and Reinvestment Act Supplement Grant, and a core grant to the Waisman Center from the National Institute of Child Health and Development [HD03352].

The Genomic Origins of CAS Are Rare Single Polymorphisms					
No.	Туре	Subtype	Abbreviation	Risk Factors	Processes Affected
1	Speech Delay	Speech Delay-Genetic	SD-GEN	Polygenic/ Environmental	Cognitive-Linguistic
2		Speech Delay– Otitis Media with Effusion	SD-OME	Polygenic/ Environmental	Auditory-Perceptual
3		Speech Delay- Developmental Psychosocial Involvement	SD-DPI	Polygenic/ Environmental	Affective- Temperamental
4	Motor Speech Disorder	Motor Speech Disorder– Apraxia of Speech	MSD-AOS	Monogenic? Oligogenic?	Speech-Motor Control
5		Motor Speech Disorder- Dysarthria	MSD-DYS	Monogenic? Oligogenic?	Speech-Motor Contro
6		Motor Speech Disorder- Not Otherwise Specified	MSD-NOS	Monogenic? Polygenic? Oligogenic? Environmental?	Speech-Motor Contro
7	Speech Errors	Speech Errors-Sibilants	SE-/s/	Environmental	Phonological Attunement
8		Speech Errors-Rhotics	SE-/r/	Environmental	Phonological Attunement

Slide 5

Slide 4

Genetic Research in CAS

□ FOXP2

- Studies reporting Speech Delay (Zhao et al., 2010)
- Studies of downstream genes (Roll et al., 2010)
- Studies with mammalian models (avian, murine, other) □ FOXP1
 - Carr et al. (2010); Hamdan et al. (2010)
 - Horn et al. (2010); Pariani (2010)
- FOXG1
 - Brunetti-Pierri et al. (2010)
- □ ELP4
- Pal et al. (2010)
- □ RAI1
 - Kogan et al. (2010)
- □ Some recent literature reviews:
 - Bishop (2009); Grigorenko (2009); Lewis (2010); Newbury & Monaco (2010); Ramus & Fisher (2009); Shriberg (2010)

Slide 7

Madison Genomic Research in Idiopathic CAS: **Progress To Date**

Ten families assessed to date

- Each family includes one or more nuclear
 - members with Idiopathic CAS
- Speech assessment using methods described in this presentation

Genomic analyses

- Array Comparative Genomic Hybridization (aCGH; copy number)
- Exome Sequencing; Bioinformatics

Results to date

- □ aCGH
 - No replication of reported genes or regions of interest
 - No new gene or regions of interest
 - Bioinformatic analyses
 - No findings Initiated November, 2010

Slide 9

Diagnostic Premise 1: Phenotype Constraints Remain the Major Need in Genomic, Diagnostic, and Other CAS Research

Nearly a decade ago . . .

• "...lack of [a definition and] an agreed-upon set of criteria for subject selection [is the] single most important impediment to theoretical and clinical advancement in AOS."

McNeil (2001)

• "...the problem lies not so much in defining the underlying impairment of AOS as in a lack of clear operational definitions or procedural criteria for the differential diagnosis of AOS."

Maassen (2002)

Psychiatry and Clinical Neurosciences 2010; 64: 565-573

Aim: FOXP2 was described as the first gene relevant to human speech and language disorders. The main objective of this study was to compare the distribu-tion of FOXP2 gene polymorphisms between patients with speech sound disorder and healthy controls. deletion of the glutamin that alter FOXP2 protein These changes are predic P2 polymorphism 69, rs17137124 and 50 patients with spe to DSM-IV, as well exons for key Conclusions: Our data support a possible role of FOXP2 in the vulnerability to speech sound disorder, which adds further evidence to implicate this gene in speech and language functions.

am of the ATG init

e T allele in the cant after Bonfer

Key words: articulation disorder, DNA seq FOXP2 gene, haplotype analysis, single no nohmembrism

Slide 8

Diagnostic Markers of Childhood Apraxia of Speech

Rationale Ι.

A. Genomic

B. Diagnostic

Methods

- A. Data Acquisition and Reduction
- **B. Analytic Framework**
- C. Methodological Constraints
- - A. Promising Diagnostic Markers

What are the core perceptual and acoustic signatures of CAS

- □ in which linguistic domains?
- from which assessment tasks?
- in which neurologic, neurodevelopmental, and idiopathic contexts?
- at which cognitive/biological ages?

Slide 13

Slide 14

Methods:

Five Participant Groups and Subgroups

Acronym n

16

3

Age (yrs)

4 - 50

11,12,16

4 18, 23, 50 5 - 16 11 Percentage of Consonants Correct (PCC)

SD

5.8

2.4 20.0

x

77.0 42.6 88.3 67.6 70.0

Group

Description

Neurogenetic Apraxia of Speech CAS-N

Chromosome Translocation FOXP2

Joubert Syndro

Diagnostic Markers of Childhood Apraxia of Speech

Rationale

- A. Genomic
- B. Diagnostic

II. Methods

A. Data Acquisition and Reduction

- **B. Analytic Framework**
- **C.** Methodological Constraints
- III. Results
 - A. Promising Diagnostic Markers
 - **B.** Group and Subgroup Comparisons
- IV. Discussion

Methods: Five Participant Groups and Subgroups

Group			Percentage o Consonants Correct (PCC		
Description	Acronym	n	Age (yrs)	x	SD
Neurogenetic Apraxia of Speech	CAS-N	16	4 - 50		
Chromosome Translocation		3	11,12,16	77.0	5.8
FOXP2		1	4	42.6	
		3	18, 23, 50	88.3	2.4
Galactosemia		8	5 - 16	67.6	20.0
Joubert Syndrome		1	11	70.0	
Idiopathic Apraxia of Speech	CAS-I	16	5 - 19	71.9	12.4
Acquired Apraxia of Speech	AOS	3	45, 53, 67	92.4	4.5

Methods: Five Participant Groups and Subgroups

Group			Percentage o Consonants Correct (PCC		
Description	Acronym	n	Age (yrs)	x	SD
Neurogenetic Apraxia of Speech	CAS-N	16	4 - 50		
Chromosome Translocation		3	11,12,16	77.0	5.8
FOXP2		1	4	42.6	~ ~ ~
Galactosemia		3	18, 23, 50	88.3 67.6	2.4
Joubert Syndrome		1	11	70.0	20.0
Idiopathic Apraxia of Speech	CAS-I	16	5 - 19	71.9	12.4
Acquired Apraxia of Speech	AOS	3	45, 53, 67	92.4	4.5
Speech Delay	SD	16	3 - 6	64.3	13.4

Slide 19

Slide 21

Methods: Five Participant Groups and Subgroups

Group					ntage of onants ct (PCC)
Description	Acronym	n	Age (yrs)	x	SD
Neurogenetic Apraxia of Speech	CAS-N	16	4 - 50		
Chromosome Translocation		3	11,12,16	77.0	5.8
FOXP2		1	4	42.6	~ ~
Galactosemia		3	18, 23, 50	88.3	2.4
Joubert Syndrome		1	11	70.0	20.0
Idiopathic Apraxia of Speech	CAS-I	16	5 - 19	71.9	12.4
Acquired Apraxia of Speech	AOS	3	45, 53, 67	92.4	4.5
Speech Delay	SD	16	3 - 6	64.3	13.4
Typically Speaking	TS	100	3 - 16	95.7	6.1

Slide 22

Vowel Task 1 (VT1) Corner Vowels

1. beet 5. pot 2. bat 6. bat 3. boot 7. boot 4. beet 8. pot	9. bat 10. beet 11. pot 12. boot	13. bat 14. pot 15. boot 16. beet
---	---	--

Vowel Task 2 (VT2) Other Vowels & Diphthongs

1.	putt	12. bite	23. put	34. putt
2.	bite	13. bit	24. bait	35. bought
3.	bought	14. boat	25. Bert	36. bait
4.	Bert	15. pet	26. boat	37. put
5.	bit	16. pout	27. bit	38. Bert
6.	bait	17. bait	28. boy	39. boat
7.	pet	18. putt	29. pet	40. boy
8.	boat	19. boy	30. pout	41. putt
9.	put	20. pet	31. bought	42. put
10.	boy	21. bite	32. bite	43. Bert
11.	bought	22. pout	33. bit	44. pout

Slide 25

	Vowel Tas	k 3	(VT3)
1.	She needs strawberry jam on her toast.	11.	Did you like the zoo this spring?
2.	He has a blue pen.	12.	I am tall.
3.	Did you like the zoo this spring?	13.	Chuck seems thirsty after the race.
4.	I am tall.	14.	Did you like the zoo this spring?
5.	Chuck seems thirsty after the race.	15.	He has a blue pen.
6.	He has a blue pen.	16.	Chuck seems thirsty after the race.
7.	She needs strawberry jam on her toast.	17.	I am tall.
8.	Did you like the zoo this spring?	18.	She needs strawberry jam on her toast
9.	I am tall.	19.	He has a blue pen.
0.	She needs strawberry jam on her toast.	20.	Chuck seems thirsty after the race.

Slide 26

Rhotics and Sibilants Task

1. sin 2. crude 3. soon 4. bird 5. skin 6. burr 7. ride 8. burg	 9. kiss 10. spoon 11. skin 12. burg 13. sin 14. crude 15. bird 16. spoon 	17. ride 18. kiss 19. soon 20. burr 21. skin 22. crude 23. burg 24. sin	25. spoon 26. burr 27. soon 28. ride 29. bird 30. kiss 31. skin 32. burg	 33. spoon 34. sin 35. burr 36. crude 37. bird 38. soon 39. ride 40. kiss

Slide 27

Challenging Words Task (CWT)

- 1. helicopter 7. alligator
- 2. kangaroo 8. watermelon

10. skates

12. zipper

- 3. elephant 9. stars
- 4. caterpillar
- 5. tomato 11. scissors
- 6. octopus

Slide 28

Multisyllabic Words Task 1 (MWT1)

- animal
 mobilize
- 3. catalog
- 4. calendar
- 5. syllable
- 6. governor
- 7. navigator
- 8. Colorado
- 9. permanent
 10. hemisphere
- 11. especially
- 12. establish
- 13. consequence
- 18. skeptical
 19. bicyclist
 20. orchestra

14. associate

15. symphony

16. enthusiasm

17. suspicious

- 21. substantial
- 22. susceptible
- 23. municipal
- 24. specific
- 25. Episcopal church

Multisyllabic Words Task 2 (MWT2)

1.	emphasis	11.	consciousness
2.	probably	12.	suspicious
3.	sympathize	13.	municipal
4.	terminal	14.	orchestra
5.	synthesis	15.	specific
6.	especially	16.	statistics
7.	peculiar	17.	fire extinguisher
8.	skeptical	18.	Episcopal church
9.	fudgesicle	19.	statistician
10.	vulnerable	20.	Nicaragua

Slide 31

. Practice	Trials	2. Test Tri	als		
tem #	Stimulus	Item #	Stimulus	Item #	Stimulus
1	MOP			13	HAMmer
2	PUPpet	1	AIRPLANE	15	TAD
		2	aWARD	14	gullAk
		3	baBOON	15	LADder
		4	BASEBALL	16	maCHINE
		5	BATHTUB	17	PEAnut
		6	CHICKen	18	PUPpy
		7	COWBOY	19	racCOON
		8	DISHes	20	reMOTE
		9	FOOTBALL	21	RObot
		10	gaRAGE	22	SIDEWALK
		11	giRAFFE	23	SNOWMAN
		12	HOTDOG	24	WINTA

Slide 33

Stimulus	Number of syllables in 5 seconds (16)	Sounds were accurate	Production was rhythmic
рл			
kл			
pAtA			
рлкл			
tikki			
pataka			
pattycake			

Slide 35

Speech Phrases Task (SPT)

1.	blue brush	13.	he makes shirts
2.	sea shells	14.	bright blue beam
3.	blue star	15.	she sells shirts
4.	just right	16.	nine horse flies
5.	black broom	17.	big black bread
6.	quite right	18.	wastebaskets
7.	snow slope	19.	blue plaid pants
8.	weak wrist	20.	fine fruit flies
9.	big farm house	21.	small wrist band
10.	dark blue hat	22.	three small crabs
11.	small broom	23.	quiet crabs claws
12.	Tom wears shoes	24.	mixed biscuits
		25.	Swiss wrist watch

Slide 32

Emphatic Stress Task (EST)

- 1. may i see **PETE**?
- 2. may i **SEE** pete?
- 3. may I see pete?
- 4. MAY i see pete?
- 5. bob may go HOME.
- 6. bob may **GO** home.
- 7. bob MAY go home.
- 8. BOB may go home.

Slide 34

Nonword Repetition Task (NRT)^a

- 9. t∫in⊃ītavb
 - 10. naīt∫ouvēīb
 - 11. doītauvæb
 - 12. teīvoīt∫aīg
- 5. teīvak
- 6. t∫ouvæg 14. dævounoīt∫ig
 - 15. naīt∫∋ītavvub

13. vēītat∫aīd⊃īp

8. noītavf 16. tævat∫inaīg

^aDollaghan & Campbell (1998)

7. væt∫āīp

1. naīb

2. vovp

3. taudz

4. db1

Syllable Repetition Task (SRT)^a

1. bada	10. dabama
2. dama	11. madaba
3. bama	12. nabada
4. mada	13. banada
5. naba	14. manaba
6. daba	15. bamadana
7. nada	16. danabama
8. maba	17. manabada
9. bamana	18. nadamaba
riberg, Lohmeier, et al. (2009)	

Slide 37

- female "MN"
- 15;8 at taping
- genetic history
 o 4q-16g chromosomal translocation
 - o deletion 4q terminus & duplication 16q terminus
- incoming diagnoses

 severe CAS
 mild to moderate regime
 - \circ mild-to-moderate receptive language deficits
 - $\ensuremath{\circ}$ severe expressive language deficits
 - o mild-to-moderate MR
 - \circ fine & gross motor deficits

Video Samples

Slide 39

SKS pertaneous WP UTT UTT Cos

Salient Information from MSAP Administration

Results from:

^aSh

- speech sound error analyses o consonants & vowels
- single-word productions vs. conversational speech
- DDK tasks
- challenging & multisyllabic word tasks

Also, interesting but not differential results from:

• syllable repetition & nonword tasks

- o cognitive deficits
- o a younger age

Procedure Used by Dr. Strand to Classify Participants' Speech Status

Procedure

- Each video or audio tape of the MSAP for each child was judged with respect to:
 - The presence or absence of 10 speech behaviors identified as being characteristic of CAS
 - The presence or absence of 10 speech behaviors identified as being characteristic of dysarthria

Criteria for Identification as CAS

- Observation of at least 4 of 10 speech characteristics frequently associated with CAS
- One or more of the characteristics must be observed in at least 3 of the MSAP tasks

Slide 43

Slide 44

Dr. Strand's Diagnostic Markers and Classification Criteria for CAS^a

"For a judgment of the presence of CAS, the child had to exhibit vowel distortions and at least 3 of the following 10 characteristics in at least 3 of the tasks:

- difficulty achieving initial articulatory configurations or
- transitionary movement gestures
- equal stress or lexical stress errors
- distorted substitutions

Scanning speech (SS)

Sound distortions (SD)

Equal stress (ES)

Slow rate (SR)

- syllable segregation
- groping
- intrusive schwavoicing errors
- voicing erro
 slow rate
- slow rate
 slow DDK
- slow DDK
 increased difficulty with multisyllabic words"

^aShriberg, L.D., Potter, N.L., & Strand, E.A. (in press)

Characteristics related to Dysarthria

Criteria for Identification as Dysarthric

- Observation of 3/10 selected speech characteristics
- One or more of the characteristics must be observed in at least 3 of the MSAP tasks

Slide 46

Characteristics related to Dysarthria

- Reduced strength of articulatory contacts (RS)
- Reduced respiratory support or respiratory incoordination (RRS-I)
- Strained or breathy phonatory quality (PQ)
- Adventitious movement (AD)

Reduced range of motion (RRM)

Irregular diadochokinetic rate (ataxia) (DDK)

Example of Worksheet Summary

Participant ID	GAL 2 M14 03
S/F Exam	Normal
DDK	Slow; awkward;
NRT	Poor vowel content; wowel distortions
EST	Stress errors Slow rate
VT1	Vowel distortions; groping
VT2	Separates consonants in blends;
•	intrusive schwa; gropes
VT3	Many vowel distortions; difficulty
	remembering sentences
ES Comments segmentatic consonant d	severe vowel distortions; slow rate, with on; deliberate speech; stress errors; some listortions
ES Diagnosis	CAS

Slide 49

Fur 3. Sample display of the three windows viewable during acoustic analysis, the transcript window, the window into the prior to th

Figure 3. Sample display of the three windows viewable during acoustic analysis: the phonetic transcript window, the waveform window, and the acoustic analysis window. For acoustic analysis, the transcript window provides information on the coded uterances (displayed to the right of the numeric uterance), any Prosody-Voice Screening Profile (PVSP) codes used, the phoneme perceptually transcribed, and the phonemes marked for acoustic analysis (highlighted using a colar code). The example displayed is the first coded uterance in a conversational sample. Data for the segmented buterance and all segmented phonemes can be viewed in the acoustic analysis window using a scrolling function to include views of onset and offset times for the uterance and each individual phoneme, pauses, characteristic F0, Mean F0, minimum and maximum F0, characteristic amplitude, and F1-F3. The moment data for a segmented fricative is displayed in the upper right corner of the acoustic analysis window.

Slide 51

Methods: Madison Data Reduction

PEPPER Environment

Perceptual Narrow phonetic transcription Prosody-Voice Screening Profile coding Acoustic TF32-Active X Automated; high throughput

Slide 50

A. Data Acquisition and Reduction

- **B. Analytic Framework**
- C. Methodological Constraints

III. Results

- A. Promising Diagnostic Markers
- B. Group and Subgroup Comparisons
- IV. Discussion

Slide 52

Tier	Domain	Index
Segmental		
	1. Vowels 2. Consonants	Percentage of Non-rhotic Vowels/Diphthongs Correct Percentage of Rhotic Vowels/Diphthongs Correct Percentage of Rhotic Vowels/Diphthongs Correct Percentage of Vowels/Diphthongs Correct CS Percentage of Vowels/Diphthongs Correct Revised Percentage of Non-rhotic Vowels/Diphthongs Correct Revised Percentage of Non-rhotic Vowel/Diphthongs Correct Revised Percentage of Vowels/Diphthongs Correct Revised. AT Percentage of Revise/Diphthongs Correct Revised. CS Percentage of Revise/Diphthongs Correct Revised. CS
	3. Vowels & Consonants	Percentage of Consonants Correct. AT Percentage of Consonants Correct. Revised: CS Percentage of Consonants Correct. Revised: AT Percentage of Consonants Correct in Complex Words: MWT Relative Omission Index Relative Substitution Index Relative Distortion Index Speech Disorders Classification System
		Intelligibility Index
_		Percentage of Structurally Correct Words
Suprasegmental	4 Dharalan	Deventeer Annualists Diversity of
	4. Phrasing	Percentage Appropriate Prirasing
	5. Ndle	Percentage Appropriate Strees
	7 Loudnee	Percentage Appropriate Oriess
	8 Pitch	Percentage Appropriate Educitess
	9 Laryngeal Quality	Percentage Appropriate Language Quality
	10 Resonance Quality	Percentage Appropriate Laryngedi Quality

Segmental	Precision		Stability
1. Vowels/Diphthongs		A	Less Stable Vowel Space
		Α	Less Stable F1
		Α	Less Stable F2
		А	Less Stable Vowel Duration
		А	Less Stable Rhotic Distortions: F3-F2
			Less Stable Vowel Errors
2. Consonants	Reduced % Glides Correct		Less Stable Consonant Errors
		А	Less Stable Sibilant Centroids
3.Vowels/Diph & Consonants			Less Stable Whole Word Errors
			Less Stable % Phonemes Correct in Complex
			Words
Suprasegmental	Precision		Stability
4. Phrasing	Increased Repetitions and Revisions	А	Reduced Speech-Pause Duration Variability Ratio
5. Rate		А	Less Stable Speaking Rate
		А	Less Stable Articulation Rate
6. Stress		А	Less Stable Lexical Stress
		А	Less Stable Emphatic Stress
		А	Less Stable Sentential Stress
7. Loudness		А	Less Stable Vowels-Consonants Intensity Ratios
8. Pitch		А	Less Stable Mean Fundamental Frequency
9. Laryngeal Quality		А	Less Stable Jitter
		А	Less Stable Shimmer
		Α	Less Stable Harmonics-to-Noise Ratio
10. Resonance Quality		А	Less Stable: Nasal: Lowered F1: /d/
		Α	Nasopharyngeal: Less Stable F2: High Vowels

Slide 57

Segmental		Precision	Stability
1. Vowels/Diphthongs	А	Reduced Vowel Space	
	А	Lengthened Vowels	
	А	Distorted Rhotics	
	А	Reduced Pairwise Vowel Duration Variability	
2. Consonants	А	Lowered Sibilant Centroids	
	А	Lengthened Cluster Durations	
3. Vowels/Diph & Consonants		Increased Percentage of Phoneme Distortions	
	А	Syllable/Word Segregation: Increased % Between/Within Word	
		Pauses	
Suprasegmental		Precision	Stability
4. Phrasing			
5. Rate	А	Slower Speaking Rate	
	А	Slower Articulation Rate	
6. Stress	А	Reduced Lexical Stress	
	А	Increased Lexical Stress	
	А	Reduced Emphatic Stress	
	А	Reduced Sentential Stress	
7. Loudness	А	Reduced Vowels-Consonants Intensity Ratios	
	А	Increased Vowels-Consonants Intensity Ratios	
8. Pitch	А	Raised Fundamental Frequency Mean	
	А	Increased Fundamental Frequency Range	
9. Laryngeal Quality			
10. Resonance Quality		Increased % of Nasopharyngeal Utterances	
	А	Nasopharyngeal: Lowered F2: High Vowels	

CPSA Precision and Stability Indices (57)^a egmen ss Stable F1 ss Stable F2 Less Stable Rhotic Distortion Less Stable Vowel Errors ions: F3-F2 2. Conso educed % Glides Correct owered Sibilant Centroids Lengthened Cluster Durations 3.Vowels and Consonants s Stable Whole Word Er Distortions Syllable/Word Segregation: In % Between/Within-Word Par Less Stable % Phonemes Correct in C Precision Stability Suprasegmen 4. Phrasing ch-Pause Dura Variability Ratio Less Stable Speaking Rate 5. Rate wer Speaking Rate Slower Articulation Rate Reduced Lexical Stress Increased Lexical Stress Reduced Emphatic Stress Reduced Sentential Stress Reduced Vowels-Consonant 6. Stress ess Stable Articulation Rate ess Stable Lexical Stress ess Stable Emphatic Stress ess Stable Sentential Stress 7. Loudr ess Stable Vowels-Cor Ratios i d Vawels-Cons Intensity Ratios owered Fundamental Frequency 8. Pitch ss Stable Mean Fundar Mean Raised Fundamental Frequency N owered Fundamental Frequency Range ncreased Fundamental Frequency Range mased Jitter 9. Laryngeal Q A Less Stable Jitter A Less Stable Shimmer A Less Stable Harmonics-to-Noise Ratio creased % Breathy Utterances icreased % Rough Utterances icreased % Strained Utterances Utterances creased % Nasal Utterances Stable: Nasal: Lowered F1: /o/ pharyngeal: Less Stable F2: High Vowels sal: Lowe red F2: H A-Acoustic An

Slide 56

Segmental		Precision	[]	Stability	
1. Vowels/Diphthongs	1				
2. Consonants	1	Nasal Emissions			
3. Vowels/Diph & Consonants	1				
Suprasegmental		Precision		Stability	
4. Phrasing	T				
5. Rate					
6. Stress					
7. Loudness					
8. Pitch	Α	Lowered Fundamental Frequency Mean			
	A	Lowered Fundamental Frequency Range			
9. Laryngeal Quality	A	Increased Jitter Increased Simmer Reduced Harmonics-to-Noise Ratio Increased % Breathy Ulterances Increased % Rough Ulterances Increased % Break/Shift/Tremorous Ulterances Increased % Break/Shift/Tremorous Ulterances			
10. Resonance Quality	А	Increased % Nasal Utterances Nasal: Lowered F1: /ɑ/			

12 Putative CSPA Markers of MSD-DYS

Slide 58

Procedure To Classify Participants as "Positive" on Each Candidate Index

Biobehavioral indices

- For indices that do not quantify speech-sound errors (e.g., Vowel Space, Vowel Duration, F2 Formant Stability), Z-scores were derived from the Typical Speaker database.
- Z-scores beyond 1 SD (i.e., less precise, less stable) were classified as 'positive' for that candidate diagnostic marker of motor speech disorder.

Speech error indices

- For 8 indices that quantify speech-sound errors (e.g., Percentage of Non-Rhotic Vowels Correct; Percentage of Glides Correct), Zscores were derived from the Speech Delay database.
- Z-scores beyond 1 SD (i.e., less precise, less stable) were classified as 'positive' for that candidate marker of motor speech disorder.

Slide 64

Slide 66

Competence, Precision, and Stability Analytics:

Psychometric Structures

Example:

Reduced

Vowel

Space

Markers

Psycho-

Categorical score

Continuous score

Composite score

Slide 69

metric Rules Indices Vowel Space Vowel Space Front and Sub Indices /i/ Quadrilateral Vowels Dispersion Cut-off Variables Criteria Conversational Vowel Vowel Challenging Source Task 1 Words Task Speech Task 2 Slide 70

Slide 71

'Top 7' Potential Diagnostic Markers of CAS for 16 Participants with Idiopathic CAS

		Anal	ytic	Effect Size ^b	90% Confidence	Sensitivity	Specificity
Domain	Index*	Precision	Stability		Interval		
Vowels	Less Stable F1		x	1.173*	0.943, 2.031	93.3	56.3
	Less Stable Vowel Duration		x	1.208*	1.010, 2.163	86.7	68.8
Vowels & Consonants	Less Stable % Phonemes Correct In Complex Words		x	0.769*	0.475, 1.184	80.0	56.3
Rate	Slower Speaking Rate	x		1.144*	0.795, 2.091	88.9	62.5
	Slower Articulation Rate	x		1.144*	0.795, 2.091	88.9	62.5
Pitch	Raised Fundamental Frequency Mean	x		1.334*	1.145, 2.251	73.3	87.5
Resonance	Lower F2: High Vowels (Nasopharyngeal)	x		0.896*	0.668, 1.939	80.0	62.5

Slide 73

Diagnostic Markers of Childhood Apraxia of Speech

- I. Rationale
 - A. Genomic
 - **B.** Diagnostic
- II. Methods
 - A. Data Acquisition and Reduction
 - **B.** Analytic Framework
 - **C. Methodological Constraints**

III. Results

A. Promising Diagnostic Markers

B. Group and Subgroup Comparisons

V. Discussion

Slide 75

Slide 77

Slide 78

Conclusions

1. Methodological constraints and heterogeneities in phenotype expression require a considerably larger database of participants (including participants with subtypes of dysarthria) before the major questions of this research can be addressed using multivariate statistics.

Conclusions and Research Questions

Four Premises Underlying CAS Diagnostic Markers Research

- Phenotype Constraints remain the major need in Genomic, Diagnostic, and Other CAS Research
- Identifying Markers of CAS in Neurologic and Neurodevelopment Contexts will inform markers of **Idiopathic CAS**
- Validated Behavioral Markers of CAS will inform explanatory accounts of CAS
- □ A Conventional, Three-Phase Speech Processing Perspective provides a sufficient framework for an explanatory account of CAS

Slide 80

Conclusions

- 1. Methodological constraints and heterogeneities in phenotype expression require a considerably larger database of participants (including participants with subtypes of dysarthria) before the major questions of this research can be addressed using multivariate statistics.
- 2. Findings to date from the present and other small data sets support the premises that an operationalized and standardized set of perceptual and acoustic markers of Idiopathic CAS can be identified from a research framework that includes children and adult participants with apraxia of speech in complex neurodevelopmental and neurologic contexts.

Slide 81

Conclusions

- 3. Findings to date from the present and other studies indicate that the core diagnostic markers of CAS will likely:
 - index variables within the linguistic domains of Vowels, Phrasing, Rate, Stress, and Resonance
 - □ include both spatial and temporal indices and quantify both precision and stability
 - be identified within assessment tasks that accommodate individual differences in biological age, cognitivelinguistic status, and minimal speech competence
 - require researchers/clinicians to have data reduction skills in perceptual and acoustic analyses systems
 - possibility of short-forms and speech recognition technology

Research Questions

1. Why do so many children, adolescents, and adults classified as having apraxia of speech have a low Percentage of Positive Markers for apraxia of speech (i.e., impacting the sensitivity of potential markers of apraxia of speech)?

Possible explanations:

- □ They are true negatives for MSD.
 - The classification criteria used to classify CAS/AOS by the third author yields some invalid classifications. Classic categorical distinctions among subtypes of MSD may need to be re-evaluated. Developmental differences in severity of expression may be a primary moderating variable in classification.

Slide 85

Research Questions

 Why do so many children with Speech Delay (SD) have a high Percentage of Positive Markers for MSD (i.e., impacting the specificity of potential markers of CAS)?

Possible explanations:

- They are false positives for any subtype of MSD.
 - The high Percentage of Positive Markers for MSD is due to methodological issues (e.g., criteria for 'positive' z-score [>1 standard deviation] is too liberal; positive scores come from different MSAP tasks than those in true MSD; other).

Slide 87

Research Questions

They are true positives for MSD, but MSAP and CPSA methods are not sufficiently sensitive for MSD-AOS.

The low Percentage of Positive Markers for MSD-AOS is due to assessment/data reduction sensitivity issues (i.e., core signs of their CAS are not identified by the current MSAP and CPSA analytics; excessive data loss on core signs of CAS due to low speech competence).

• Other explanations?

Slide 86

Research Questions

- □ They are true positives for MSD-NOS.
 - They have some form of a delay or difference in speech motor development that does not meet criteria for apraxia (MSD-AOS) or any subtype of dysarthria (MSD-DYS).
- Other explanations?

Slide 88

Research Directions Increase database of participants with CAS in neurologic, complex neurodevelopmental, and idiopathic contexts, including participants with subtypes of dysarthria Develop speech tasks that maximize obtained speech tokens eligible for acoustic analyses Complete psychometric studies to determine optimum cut-off points for 'positive' status on potential markers of CAS Complete task-dependent analyses to determine which MSAP tasks and subscales are optimally sensitive and specific for each potential marker of CAS

Slide 89

П

Research Directions

- Complete acoustic analyses of Vowels, Phrasing, Rate, Stress, and Resonance data toward explanatory accounts of CAS associated with core deficits in planning/programming
- Forthcoming collaborative studies of the hypothesis of apraxia of speech in other complex neurodevelopmental disorders:
 - Autism (Shriberg, Paul, Black, & van Santen, in press)
 - Down syndrome (Wilson; Abbeduto; Camarata)
 - Fragile X syndrome (Abbeduto)
 - Galactosemia (Potter, Strand)
 - Velocardiofacial syndrome (Baylis)

Slide 91

References

- Kogan, J. M., Miller, E., & Ware, S. M. (2009). High resolution SNP based microarray mapping of mosaic supernumerary marker chromosomes 13 and 17: Delineating novel loci for apraxia. American Journal of Medical Genetics Part A, 149A: 887-893.
- Lewis, B. (October, 2010). Genetic and neurological correlates of childhood apraxia of speech. Paper presented for the Childhood Apraxia of Speech Virtual Conference, University of Wisconsin-Eau Claire, Eau Claire, WL
- Maassen (2002), Issues contrasting adult acquired versus developmental apraxia of speech, Seminars in Speech and Language, 23, 257-266.
- McNeil, M. R. (2001). The assiduous challenge of defining and explaining apraxia of speech. In B. Maassen, W. Hulstijn, R. D. Kent, H. F. M. Peters, & P. H. H. M. van Lieshout (Eds.), Speech Motor Control in Normal and Disordered Speech: Proceedings of the 4th International Speech Motor Conference (pp. 337-342) Nijmegen: Uitgeverij Vantilt.
- Newbury, D. F. & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68, 309-320.
- Pal, D. K., Li, W., Clarke, T., Lieberman, P., & Strug, L. J. (in press). Pleiotropic effects of the 11p13 locus on developmental dyspraxia and EEG centrotemporal sharp waves. Genes, Brain, and Behavio
- Pariani, M. J., Spencer, A., Grahan, J. M., & Rimoin, D. L. (2009). A 785 kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. European Journal of Medical Genetics, 52, 123-127.
- Ramus, F. & Fisher, S. E. (2009). Genetics of language. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences IV (pp. 855-872). Cambridge, MA: MIT Press.

Slide 93

Diagnostic Markers of Childhood Apraxia of Speech

- I. Rationale
 - A. Genomic
 - **B.** Diagnostic
- П. **Methods**
 - A. Data Acquisition and Reduction
 - **B. Analytic Framework**
 - C. Methodological Constraints
- Ш. Results
 - A. Promising Diagnostic Markers
 - B. Group and Subgroup Comparisons
- IV Discussion

References

Bishop, D. V. M. (2009). Genes, cognition, and communication. Annals of the New York Academy of Sciences, 1156, 1-18.

- Brown, R, L, (2009), ESCalc: Software for calculation of exact proportional difference effect size confidence intervals version 1.00. Madison, WI: Research Design & Statistics Unit, University of Wisconsin-Madison, March 2009.
- Brunetti-Pierri, N., Paciorkowski, A. R., Ciccone, R., Della Mina, E., Bonaglia, M. C., Borgatti, R., et al. (in press). Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. European Journal of Human Genetics.
- Carr, C. W., Moreno-De-Luca, D., Parker, C., Zimmerman, H. H., Ledbetter, N., Martin, C. L., et al. (2010). Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haplounsifficiency. European Journal of Human Genetics, 18, 1216-1220.
- Dollaghan, C., & Campbell, T. F. (1998). Nonword repetition and child language impairment. Journal of Speech, Language, and Hearing Research, 41, 1136-1146.
- Grigorenko, E. L. (2009), Speaking genes or genes for speaking? Deciphering the genetics of speech and language. The Journal of Child Psychology and Psychiatry, 50, 116-125
- Hamdan, F. F., Daoud, H., Rochefort, D., Piton, A., Gauthier, J., Landlois, M., et al. (in press), De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. The American Journal of Human Genetics.
- Horn, D., Kapeller, J., Rivera-Brugués, N., Moog, U., Lorenz-Depiereux, B., Eck, S., et al. (in press). Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Human Mutation.

Slide 92

References

- Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., et al. (in press). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex Human Molecular Genetics.
- Shriberg, L. D. (2010). A neurodevelopmental framework for research in Childhood Apraxia of Speech. In B. Maassen & P. van Lieshout (Eds), Speech Motor Control: New developments in basic and applied research (pp. 259-270). Oxford: Oxford University Press.
- Shriberg, L. D., Fourakis, M., Hall, S., Karlsson, H. K., Lohmeier, H. L, McSweeny, J., Potter, N. L., Scheer Cohen, A. R., Strand, E. A., Tilkens, C. M., & Wilson, D. L. (2010). Extensions to the Speech Disorders Classification System (SDCS). Clinical Linguistics & Phonetics, 24, 795-824.
- Shriberg, L. D., Lohmeier, H. L., Campbell, T. F., Dollaghan, C. A., Green, J. R., & Moore, C. A. (2009). A nonword repetition task for speakers with misarticulations: The Syllable Repetition Task (SRT). Journal of Speech, Language, and Hearing Research, 52, 1189-1212.
- Shriberg, L. D., Paul, R., Black, L. M., & van Santen, J. P. (in press). The hypothesis of apraxia of speech in children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders
- Shriberg, L. D., Potter, N. L., & Strand, E. A. (in press). Prevalence and phenotype of childhood apraxia of speech in youth with galactosemia. Journal Speech, Language, and Hearing Research.
- StatXact-5 for Windows (2001). Software for Exact Nonparametric Inference. Cytel Software Corporation, Cambridge, MA
- Zhao, Y., Ma, H., Wang, Y., Gao, H., Xi, C., Hua, T., et al. (2010). Association between FOXP2 gene and speech sound disorder in Chinese population. Psychiatry and Clinical Neurosciences, 64, 565-573.

Slide 94

Thanks . . .

http://www.waisman.wisc.edu/phonology/